迭代求解最优化问题——步长确定

梯度下降法和牛顿法其实在某种程度上只是确定了下降的方向。而下降的步长(收敛速率系数)还需要我们自己确定。而对于不同的问题下降的步长往往也是不一样的。这就造成了一些麻烦。

线搜索

前面提到迭代求解最优化问题 minf(x) min f ( x ) 的一般形式是 xk+1=xk+Δ x k + 1 = x k + Δ 。事实上我们可以把 Δ Δ 分为两个部分:方向和步长。

先确定方向,再确定步长的算法称为线搜索算法。它的一般形式为。

xk+1=xk+αkpk x k + 1 = x k + α k p k

其中 α α 为步长, p p 为方向。显然有fkpk0。进而有 pk=B1kfk p k = − B k − 1 ∇ f k 。其中B为对称非奇异矩阵。

  • 当B为I时,即为梯度下降法
  • 当B为 2fk ∇ 2 f k 时,即为牛顿法
  • 当B通过迭代进行更新时,为拟牛顿法
  • 当B为 JTJ J T J 时,为高斯-牛顿法

当搜索方向确定后,就需要确定步长。

步长

而如何得到一个合适的步长这个问题又构成了一个最优化问题,即

minh(α)=f(xk+αpk) min h ( α ) = f ( x k + α p k )

对这个优化问题我们可以根据具体情况求出闭式解,但是这往往会很复杂。因此我们仅仅对它进行一个粗略的估计,从而在可接受的计算量的情况下,尽可能的求得较大的步长,使得h(α)尽可能降低。

(天啊,为了求解最优化问题的一步迭代步长我们又构造了一个最优化问题来进行迭代)

Armijo条件

为了满足上面的条件,人们提出了很多准则来判断步长是否合适。比如Armijo条件,这个准则的数学定义如下:

f(xk+αpk)f(xk)+αcfkpk f ( x k + α p k ) ≤ f ( x k ) + α c ∇ f k p k

其中 c(0,1) c ∈ ( 0 , 1 )

可以看到,这个条件约束了 h(α) h ( α ) 的变化情况,使得损失函数能够尽量降低。

在这里介绍的回溯线搜索算法即是在这些原则的基础上实现的。回溯线算法的基本思想是在搜索方向上先设置一个较大的初始步长,如果步长太大,则以一定比例缩减步长直到满足Armijo条件。这种搜索算法就满足了步长选择的另外一个准则——每次迭代的步长尽可能大。

具体来说该算法的流程如下:

  1. 使用一个较大的步长 α0 α 0 对步长进行初始化。确定缩减因子 τ(0,1) τ ∈ ( 0 , 1 ) c(0,1) c ∈ ( 0 , 1 )
  2. 当Armijo条件不满足时,令 αj=ταj1 α j = τ α j − 1
  3. 返回 αj α j
  • 6
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: 最速下降法是一种求解最优化问题的常用方法,其基本思想是在每一步中选择使目标函数下降最快的方向进行搜索。下面是使用MATLAB实现最速下降法求解最优化问题的代码: function [x,fval] = steepest_descent(f,x,tol,maxiter) % f: 目标函数 % x: 初始点 % tol: 容差 % maxiter: 最大迭代次数 x = x; % 初始化 fval = f(x); % 计算初始点的目标函数值 iter = ; % 迭代次数 while iter < maxiter % 计算梯度 grad = gradient(f,x); % 计算步长 alpha = fminsearch(@(a) f(x-a*grad),); % 更新x x = x - alpha*grad; % 计算新的目标函数值 new_fval = f(x); % 判断是否满足容差要求 if abs(new_fval-fval) < tol break; end % 更新目标函数值和迭代次数 fval = new_fval; iter = iter + 1; end end 其中,gradient(f,x)是MATLAB内置函数,用于计算目标函数f在点x处的梯度。fminsearch(@(a) f(x-a*grad),)是MATLAB内置函数,用于求解一维函数的最小值,即在方向grad上的最优步长alpha。 ### 回答2: 最速下降法是一种求解最优化问题的常用方法,可以用于解决各种数学模型中的优化问题。在matlab中,可以使用fminunc函数来实现最速下降法求解最优化问题。下面我将详细介绍如何利用matlab代码实现最速下降法求解最优化问题。 首先,我们需要定义一个目标函数,这个函数是我们要进行优化的主要目标。例如,我们可以定义一个简单的目标函数,如下所示: ``` function f = objfun(x) f = x(1)^2 + x(2)^2; end ``` 这个函数的输入参数为x,输出参数为f,函数体中的公式为f = x(1)^2 + x(2)^2,即求解x1的平方与x2的平方和的最小值。 接下来,我们需要确定初始点的位置,以便进行最速下降法的迭代计算。这个初始点可以是任何值,通常是通过试验或者经验找到的。例如,我们可以定义一个初始点的坐标为(1, 1),如下所示: ``` x0 = [1, 1]; ``` 接着,我们需要调用fminunc函数来进行最速下降法的计算,该函数的语法为: ``` [x, fval] = fminunc(fun, x0) ``` 其中,fun为目标函数的句柄,x0为初始点的位置,x为最优点的位置,fval为目标函数在最优点处的取值。 将我们定义的目标函数和初始点输入fminunc函数,得到matlab代码如下: ``` x0 = [1, 1]; fun = @(x)objfun(x); options = optimoptions('fminunc','Display','iter','Algorithm','quasi-newton'); [x,fval,exitflag,output] = fminunc(fun,x0,options); ``` 其中,Display为输出选项,Algorithm为最优化算法选择。该代码中的最优化算法选择为拟牛顿法,也可以选择最速下降法来实现最速下降法求解最优化问题。 最后,我们可以将最速下降法求解最优化问题的结果输出到控制台上,以便查看最优点的位置和目标函数在最优点处的取值。 以上就是关于如何使用matlab代码实现最速下降法求解最优化问题的详细介绍。需要注意的是,最速下降法求解最优化问题具有一定的局限性,对于某些复杂的问题可能求解不出最优解。因此,在实际操作中,需要根据具体问题的复杂程度选择合适的方法来解决。 ### 回答3: 最速下降法是一种常见的求解最优化问题的方法,其基本思想是通过不断迭代找到每一步中相对于当前点下降最快的方向,并按照一定步长沿该方向移动,最终达到最优解点。 在使用matlab进行最速下降法求解最优化问题时,可以采用以下步骤: 1. 定义目标函数和梯度函数 首先需要定义目标函数和梯度函数,以用于计算每次迭代的下降方向和步长。例如,若目标函数为$f(x,y)$,则可以在matlab中定义如下: function [f,g] = myfun(x) f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2; g = [-2*(1-x(1))-400*x(1)*(x(2)-x(1)^2); 200*(x(2)-x(1)^2)]; 其中,g为目标函数的梯度向量。 2. 初始化 通过给定初始点$x_0$,可以初始化最速下降法迭代过程。例如,可以定义初始点为$(1,1)$: x0 = [1;1]; 3. 迭代过程 在每次迭代中,通过计算目标函数的梯度和每次迭代的下降方向,以及选择一定的步长,来寻找下一个点$x_k$。例如,可以使用以下代码实现: x = x0; for k = 1:100 [f,g] = myfun(x); p = -g; % 计算下降方向 alpha = linesearch(x,p,f,g); % 选择步长 x = x + alpha*p; % 移动到下一个点 end 其中,linesearch(x,p,f,g)为步长选择函数,可以根据不同的步长选择方法进行编写。 4. 输出结果 最后,在迭代结束后,输出最优解点和最优解值。例如,可使用如下代码: fprintf('The minimum point is [%f %f] with value %f.\n', x(1),x(2),f); 综上所述,通过以上步骤,可以利用matlab实现最速下降法求解最优化问题。需要注意的是,在实际应用中,还需根据具体情况进行参数调优、收敛判断等处理,以保证算法的准确性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值