
计算机视觉
文章平均质量分 85
炽霜
SLAM算法工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
对极几何、姿态估计与尺度一致性
尺度不确定/不一致性通过分解本质矩阵可以反推t和R。显然X1Tt×RX2=0=X1Tst×RX2X_1^Tt^\times R X_2=0=X_1^Tst^\times R X_2X1Tt×RX2=0=X1Tst×RX2因此求出来的t也是无尺度的。对同一场景中的三帧,我们通过求解和分解本质矩阵的方法求出它们之间的相对位姿T12,T23,T13T_{12},T_{23},T_{13}T12,T23,T13,由于单独两帧求解时存在尺度的不确定性,因此求出来的位置具有尺度不一致性,即T12原创 2021-12-25 01:32:18 · 4451 阅读 · 0 评论 -
对极几何
两视图几何对同一场景在两个不同的视角下观看,可以得到两张不同的图像,如图所示。与此相关的几何问题即两视图几何问题对极几何根据投影模型,场景中的同一点在不同的视角下所在的图像的像素位置存在一定的约束,这一约束称为对极约束。具体来说,假设世界坐标系下的某一点...原创 2021-12-13 23:05:04 · 2757 阅读 · 0 评论 -
从NMS谈起——实时ANMS
上一篇中讲到ANMS可以实现关键点在局部上的稀疏分布和全局上的均匀分布。然而由于时间复杂度太高,无法实时运行,因此不具备实用价值。### Approximate ANMS为解决这一问题,学术界通过近似,提出了能够实时运行同时效果接近于ANMS的算法。这里对Efficient adaptive non-maximal suppression algorithms for homogeneous spatial keypoint distribution 中提出的SSC算法进行介绍原创 2021-11-22 00:17:08 · 2971 阅读 · 0 评论 -
从NMS谈起——自适应非极大值抑制算法(ANMS)
自适应非极大值抑制算法自适应非极大值抑制算法是论文Multi-Image Matching using Multi-Scale Oriented Patches提出的一种算法。基本思想是评估所有interesting point的极大区域,并进行排序。具体来说,就是先选取很多的interesting point,组成集合S。对S中的每个点xix_i,寻找它的响应能作为区域最大值的区域半径rir_i,原创 2017-10-13 14:02:25 · 6615 阅读 · 0 评论 -
从NMS谈起——什么是好的特征
特征的评价提取特征时我们往往先提取关键点,再提取描述符。前者决定了我们用哪些点来代表一幅图像,后者决定了我们如何描述图像的内容。相应的,对于关键点和描述符都有不同的评价标准。对于描述符,我们希望对应点对的描述符尽量相似,非对应点对的描述符尽量不同。对于关键点,则没有这么简单。可重复性我们使用一副图像中的某些点(或者patch)来代表整张图像,因此对于关键点,我们希望它有明确的几何意义,因此现在使用的关键点往往是角点或者斑点。对于同一场景,我们希望提取的特征不随着视角和环境变化而大幅度变动,这实际上是希原创 2021-06-03 01:08:57 · 622 阅读 · 0 评论 -
MVG读书笔记——射影变换的校正(三)
上一节讲到,知道了图像的C∗∞C^*_\infty,就可以恢复图像的部分度量性质,事实上,对C∗∞C^*_\infty进行SVD分解,就能得到图像的各种性质,分解如下: C∗∞′=HpHAHsC∗∞(HpHAHs)T=(HpHA)(HsC∗∞HTp)(HTAHTp)=[KKTvTKKTKKTvvTKKTv]\begin{align}C^*_\infty{'}&=H_pH_AH_sC^*_\inft原创 2017-08-13 00:34:16 · 1721 阅读 · 0 评论 -
MVG读书笔记——射影变换的校正(二)
虚圆点(circular points)上一节讲到仿射变换中无穷远处的直线是固定的。而其上的点是不固定的。这很容易理解,对一条直线沿着它的切线方向便宜,直线方程不变,但是上面的点的坐标却发生了变化。然而,由几何计算却可以发现对于相似变换,无穷远处有两个共轭的理想点是固定的,即 I=⎡⎣⎢⎢1−i0⎤⎦⎥⎥,J=⎡⎣⎢⎢1−i0⎤⎦⎥⎥ I=\begin{bmatrix}1\\-i\\0\end{b原创 2017-08-11 21:20:07 · 1589 阅读 · 2 评论 -
MVG读书笔记——射影变换的校正(一)
仿射变换中的固定直线上一节讲到,无限远处直线经过投影变换可能变成有限处直线,而对于仿射变换则不会出现这种情况。这是由仿射变换的性质决定的,证明如下: l′∞=H−TAl∞=[A−T−tTA−T01]⎡⎣⎢⎢001⎤⎦⎥⎥=⎡⎣⎢⎢001⎤⎦⎥⎥=l∞l'_\infty = H_A^{-T}l_\infty=\begin{bmatrix}A^{-T}&0\\-t^TA^{-T}&1\end{bmat原创 2017-08-04 20:54:44 · 1790 阅读 · 1 评论 -
距离变换及其数学推导
距离变换假设二值图像I,其中有前景点集F,背景点集B。则由通过距离变换可以得到距离图D。 其中 D(p)=min(d(p,q)),p∈F,q∈BD(p)=min(d(p,q)),p\in F,q\in B原创 2017-10-26 19:44:38 · 1692 阅读 · 0 评论 -
MVG读书笔记——单应矩阵估计这件小事(四)
不同于之前提到的代数误差,几何误差往往不能直接解出。为优化几何误差,我们需要使用迭代的方法。迭代最小化的方法一般包括5个环节:原创 2017-10-02 01:50:10 · 1090 阅读 · 5 评论 -
MVG读书笔记——单应矩阵估计这件小事(三)
实际应用中,不同程序对于坐标原点的规定可能不同,坐标系的尺度也可能不同。于是问题就来了,在这些情况下我们通过两幅图像的对应点求解出的单应矩阵还是同一个么?即单应矩阵有没有不变性?原创 2017-09-10 19:46:31 · 1578 阅读 · 4 评论 -
MVG读书笔记——单应矩阵估计这件小事(二)
还是以两幅图像进行单应矩阵求解为例,上面讲到使用DLT算法一对对应点之间可以构成一个方程组Ah=0Ah=0,其中A为一个2×92 \times 9的矩阵。由此只需要4个点就可以求解出H矩阵。但是在实际的应用中,还有一些问题需要解决。超定方程一方面,我们得到的两幅图像的对应点往往多于4个点,从而得到一个系数矩阵A2n×9A_{2n \times 9},而由于噪声的存在,矩阵的行向量之间并不是线性相关的原创 2017-09-09 22:23:51 · 3256 阅读 · 2 评论 -
MVG读书笔记——单应矩阵估计这件小事(一)
参数估计是计算机视觉中经常遇到的一个问题,为较好的估计参数,人们发明了各种各样的算法。这里我们就以单应矩阵H的估计为例,一个个介绍这些常用算法。##DLT算法DLT(direct linear transform)算法是一个用于解决包含尺度的最小二乘问题的算法。可以解决的问题包括相机内参估计、单应矩阵估计、基础矩阵估计等。以单应原创 2019-04-11 00:28:09 · 2681 阅读 · 0 评论 -
BRIEF,rBRIEF,BOLD——从Binary描述量说起
关键点,描述子在进行图像匹配的时候,为加快速度,也为了去除干扰,我们常常通过图像的关键点进行匹配。图像的角点、斑点等称为关键点。为使得关键点具有区分度(high variance)。我们使用一组向量来对关键点进行描述,称这组向量为描述子(描述量)。这组向量可以是直接对关键点周围patch的像素进行展开,可以使用关键点周围的梯度统计直方图构建,当然也有许多其它的方法。BRIEF为使得不同光照,视角下同原创 2017-10-01 01:12:23 · 2692 阅读 · 0 评论 -
特征匹配——以目标图像检测为例
问题描述标记定位是指在图像中寻找给定标记并框选标记所在区域的过程。这个问题包括两个部分:识别标记是否在图像中计算出图像中标记的边界。一个典型的标记检测的例子如下: 标记识别标记识别其实是在图像中进行标记的匹配的过程。关于图像匹配很自然的一个想法是逐点比较像素的RBG值。但是几何变换前后的图像我们通常认为是同一幅图像,考虑这一点,这种初级的想法是行不通的。对于图像的匹配我们一般使用特征点来进行原创 2021-11-26 00:01:09 · 2931 阅读 · 0 评论