《机器学习实战》k最近邻算法(K-Nearest Neighbor,Python实现)

本文详细解读了KNN算法的核心思想、流程,并提供了完整的Python代码实现。通过实例展示如何利用距离计算进行分类决策,以及具体代码应用步骤。
============================================================================================
《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包含对其中算法的理解和算法的Python代码实现
 
另外博主这里有机器学习实战这本书的所有算法源代码和算法所用到的源文件,有需要的留言
============================================================================================
 
一、什么是看KNN算法?
二、KNN算法的一般流程
三、KNN算法的Python代码实现


numpy 模 块 参 考教程: http://old.sebug.net/paper/books/scipydoc/index.html
决策树(ID3)算法请参考: http://blog.csdn.net/gamer_gyt/article/details/47679017

一:什么是看KNN算法?
        kNN算法全称是k-最近邻算法(K-Nearest Neighbor)
        kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
下边举例说明:

即使不知道未知电影属于哪种类型,我们也可以通过某种方法计算出来,如下图

现在我们得到了样本集中与未知电影的距离,按照距离的递增顺序,可以找到k个距离最近的电影,假定k=3,则三个最靠近的电影是和he is not realy into Dudes,Beautiful women, California man kNN算法按照距离最近的三部电影类型决定未知电影类型,这三部都是爱情片,所以未知电影的类型也为爱情片
二:KNN算法的一般流程

step.1---初始化距离为最大值

step.2---计算未知样本和每个训练样本的距离dist

step.3---得到目前K个最临近样本中的最大距离maxdist

step.4---如果dist小于maxdist,则将该训练样本作为K-最近邻样本

step.5---重复步骤2、3、4,直到未知样本和所有训练样本的距离都算完

step.6---统计K-最近邻样本中每个类标号出现的次数

step.7---选择出现频率最大的类标号作为未知样本的类标号


三、KNN算法的Python代码实现
#encoding:utf-8
from numpy import *
import operator

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels

def classify0(inX,dataSet,labels,k):
    #返回“数组”的行数,如果shape[1]返回的则是数组的列数
    dataSetSize = dataSet.shape[0]
    #两个“数组”相减,得到新的数组
    diffMat = tile(inX,(dataSetSize,1))- dataSet
    #求平方
    sqDiffMat = diffMat **2
    #求和,返回的是一维数组
    sqDistances = sqDiffMat.sum(axis=1)
    #开方,即测试点到其余各个点的距离
    distances = sqDistances **0.5
    #排序,返回值是原数组从小到大排序的下标值
    sortedDistIndicies = distances.argsort()
    #定义一个空的字典
    classCount = {}
    for i in range(k):
        #返回距离最近的k个点所对应的标签值
        voteIlabel = labels[sortedDistIndicies[i]]
        #存放到字典中
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
    #排序 classCount.iteritems() 输出键值对 key代表排序的关键字 True代表降序
    sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True)
    #返回距离最小的点对应的标签
   return sortedClassCount[0][0]

调用方式:打开CMD,进入kNN.py文件所在的目录,输入Python,依次输入import kNN     group,labels = kNN.createDataSet()    kNN.classify0([0,0],group,lables,3)


搜索与推荐Wiki

扫一扫 关注微信公众号!号主 专注于搜索和推荐系统,尝试使用算法去更好的服务于用户,包括但不局限于机器学习,深度学习,强化学习,自然语言理解,知识图谱,还不定时分享技术,资料,思考等文章!


                             【技术服务】,详情点击查看:https://mp.weixin.qq.com/s/PtX9ukKRBmazAWARprGIAg


外包服务

 

### 实现基于 K 最近邻的凹包算法(K-Nearest Neighbor based Concave Hull) K 最近邻KNN)是一种常用于分类、回归和聚类的机器学习方法。在计算几何中,KNN 也可用于构造点集的凹包。该方法通过为每个点构建局部邻域关系,并根据距离或角度选择边界点,从而逐步生成包围整个点集的凹形轮廓。 #### 算法步骤 1. **输入**:一组二维点集合 $ P = \{p_1, p_2, ..., p_n\} $ 2. **初始化**:选择一个起始点(如最左下角的点),将其加入凹包结果集中 3. **迭代扩展**: - 对当前点 $ p_{current} $,搜索其 K 个最近邻- 在这些邻域点中,选择一个满足特定条件(如最大极角变化、最小夹角、最大距离等)的点作为下一个边界点 4. **终止条件**:当回到初始点或所有候选点已处理完毕时停止迭代 该方法相比 Alpha Shapes 更容易实现且适用于大规模点云数据,但对参数 $ K $ 敏感,需要合理设置以避免过度拟合或欠拟合[^1]。 --- ### C++ 示例代码 以下是一个基于 OpenCV 和 FLANN(Fast Library for Approximate Nearest Neighbors)实现KNN 凹包算法示例: ```cpp #include <opencv2/opencv.hpp> #include <opencv2/flann.hpp> #include <vector> struct Point { double x, y; }; std::vector<Point> computeConcaveHullUsingKNN(const std::vector<cv::Point2f>& inputPoints, int k = 5) { if (inputPoints.empty()) return {}; std::vector<Point> concaveHull; std::vector<int> usedIndices(inputPoints.size(), 0); // 构建 FLANN 索引 cv::flann::Index flannIndex(cv::Mat(inputPoints).reshape(1), cv::flann::KDTreeIndexParams(4)); // 寻找起始点(最左侧最低点) size_t startIndex = 0; for (size_t i = 1; i < inputPoints.size(); ++i) { if (inputPoints[i].y < inputPoints[startIndex].y || (inputPoints[i].y == inputPoints[startIndex].y && inputPoints[i].x < inputPoints[startIndex].x)) { startIndex = i; } } size_t currentIdx = startIndex; concaveHull.push_back({inputPoints[currentIdx].x, inputPoints[currentIdx].y}); usedIndices[currentIdx] = 1; while (true) { std::vector<int> indices(k); std::vector<float> dists(k); cv::Mat query(1, 1, CV_32F, const_cast<float*>(inputPoints[currentIdx].val)); flannIndex.knnSearch(query, indices, dists, k, cv::flann::SearchParams(32)); // 选择未使用的最近邻点中角度最大的点 double maxAngle = -M_PI; size_t nextIdx = currentIdx; for (int i = 0; i < k; ++i) { if (usedIndices[indices[i]] || indices[i] == currentIdx) continue; double angle = std::atan2( inputPoints[indices[i]].y - inputPoints[currentIdx].y, inputPoints[indices[i]].x - inputPoints[currentIdx].x ); if (angle > maxAngle) { maxAngle = angle; nextIdx = indices[i]; } } if (nextIdx == currentIdx || nextIdx == startIndex) break; concaveHull.push_back({inputPoints[nextIdx].x, inputPoints[nextIdx].y}); usedIndices[nextIdx] = 1; currentIdx = nextIdx; } return concaveHull; } ``` --- ### 性能优化建议 - 使用 KDTree 或 Ball Tree 提高 KNN 搜索效率 - 引入角度限制(如最大夹角变化)以避免连接不合理的远点 - 设置最小距离阈值防止重复选点 - 对大规模点集进行预处理(如降采样、去噪) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值