DES算法

原创 2001年02月16日 08:56:00

DES算法


How to implement the Data Encryption Standard (DES)

A step by step tutorial
Version 1.2


The Data Encryption Standard (DES) algorithm, adopted by the U.S.
government in 1977, is a block cipher that transforms 64-bit data blocks
under a 56-bit secret key, by means of permutation and substitution. It
is officially described in FIPS PUB 46. The DES algorithm is used for
many applications within the government and in the private sector.

This is a tutorial designed to be clear and compact, and to provide a
newcomer to the DES with all the necessary information to implement it
himself, without having to track down printed works or wade through C
source code. I welcome any comments.
Matthew Fischer <mfischer@heinous.isca.uiowa.edu>


Here's how to do it, step by step:

1 Process the key.

1.1 Get a 64-bit key from the user. (Every 8th bit is considered a
parity bit. For a key to have correct parity, each byte should contain
an odd number of "1" bits.)

1.2 Calculate the key schedule.

1.2.1 Perform the following permutation on the 64-bit key. (The parity
bits are discarded, reducing the key to 56 bits. Bit 1 of the permuted
block is bit 57 of the original key, bit 2 is bit 49, and so on with bit
56 being bit 4 of the original key.)

Permuted Choice 1 (PC-1)

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

1.2.2 Split the permuted key into two halves. The first 28 bits are
called C[0] and the last 28 bits are called D[0].

1.2.3 Calculate the 16 subkeys. Start with i = 1.

1.2.3.1 Perform one or two circular left shifts on both C[i-1] and
D[i-1] to get C[i] and D[i], respectively. The number of shifts per
iteration are given in the table below.

Iteration # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Left Shifts 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

1.2.3.2 Permute the concatenation C[i]D[i] as indicated below. This
will yield K[i], which is 48 bits long.

Permuted Choice 2 (PC-2)

14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

1.2.3.3 Loop back to 1.2.3.1 until K[16] has been calculated.

2 Process a 64-bit data block.

2.1 Get a 64-bit data block. If the block is shorter than 64 bits, it
should be padded as appropriate for the application.

2.2 Perform the following permutation on the data block.

Initial Permutation (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

2.3 Split the block into two halves. The first 32 bits are called L[0],
and the last 32 bits are called R[0].

2.4 Apply the 16 subkeys to the data block. Start with i = 1.

2.4.1 Expand the 32-bit R[i-1] into 48 bits according to the
bit-selection function below.

Expansion (E)

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

2.4.2 Exclusive-or E(R[i-1]) with K[i].

2.4.3 Break E(R[i-1]) xor K[i] into eight 6-bit blocks. Bits 1-6 are
B[1], bits 7-12 are B[2], and so on with bits 43-48 being B[8].

2.4.4 Substitute the values found in the S-boxes for all B[j]. Start
with j = 1. All values in the S-boxes should be considered 4 bits wide.

2.4.4.1 Take the 1st and 6th bits of B[j] together as a 2-bit value
(call it m) indicating the row in S[j] to look in for the substitution.

2.4.4.2 Take the 2nd through 5th bits of B[j] together as a 4-bit
value (call it n) indicating the column in S[j] to find the substitution.

2.4.4.3 Replace B[j] with S[j][m][n].

Substitution Box 1 (S[1])

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S[2]

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[3]

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S[4]

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S[5]

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S[6]

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S[7]

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S[8]

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

2.4.4.4 Loop back to 2.4.4.1 until all 8 blocks have been replaced.

2.4.5 Permute the concatenation of B[1] through B[8] as indicated below.

Permutation P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

2.4.6 Exclusive-or the resulting value with L[i-1]. Thus, all together,
your R[i] = L[i-1] xor P(S[1](B[1])...S[8](B[8])), where B[j] is a 6-bit
block of E(R[i-1]) xor K[i]. (The function for R[i] is written as, R[i] =
L[i-1] xor f(R[i-1], K[i]).)

2.4.7 L[i] = R[i-1].

2.4.8 Loop back to 2.4.1 until K[16] has been applied.

2.5 Perform the following permutation on the block R[16]L[16].

Final Permutation (IP**-1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25


This has been a description of how to use the DES algorithm to encrypt
one 64-bit block. To decrypt, use the same process, but just use the keys
K[i] in reverse order. That is, instead of applying K[1] for the first
iteration, apply K[16], and then K[15] for the second, on down to K[1].

Summaries:

Key schedule:
C[0]D[0] = PC1(key)
for 1 <= i <= 16
C[i] = LS[i](C[i-1])
D[i] = LS[i](D[i-1])
K[i] = PC2(C[i]D[i])

Encipherment:
L[0]R[0] = IP(plain block)
for 1 <= i <= 16
L[i] = R[i-1]
R[i] = L[i-1] xor f(R[i-1], K[i])
cipher block = FP(R[16]L[16])

Decipherment:
R[16]L[16] = IP(cipher block)
for 1 <= i <= 16
R[i-1] = L[i]
L[i-1] = R[i] xor f(L[i], K[i])
plain block = FP(L[0]R[0])


To encrypt or decrypt more than 64 bits there are four official modes
(defined in FIPS PUB 81). One is to go through the above-described
process for each block in succession. This is called Electronic Codebook
(ECB) mode. A stronger method is to exclusive-or each plaintext block
with the preceding ciphertext block prior to encryption. (The first
block is exclusive-or'ed with a secret 64-bit initialization vector
(IV).) This is called Cipher Block Chaining (CBC) mode. The other two
modes are Output Feedback (OFB) and Cipher Feedback (CFB).

When it comes to padding the data block, there are several options. One
is to simply append zeros. Two suggested by FIPS PUB 81 are, if the data
is binary data, fill up the block with bits that are the opposite of the
last bit of data, or, if the data is ASCII data, fill up the block with
random bytes and put the ASCII character for the number of pad bytes in
the last byte of the block. Another technique is to pad the block with
random bytes and in the last 3 bits store the original number of data bytes.

The DES algorithm can also be used to calculate checksums up to 64 bits
long (see FIPS PUB 113). If the number of data bits to be checksummed is
not a multiple of 64, the last data block should be padded with zeros. If
the data is ASCII data, the first bit of each byte should be set to 0.
The data is then encrypted in CBC mode with IV = 0. The leftmost n bits
(where 16 <= n <= 64, and n is a multiple of 8) of the final ciphertext
block are an n-bit checksum


中华技术网整理发布 http://www.asfocus.com http://www.netqu.com

des算法java模拟实现

大二下学期应用密码学课程设计 已同步github项目:url:https://github.com/leiflee/desdemogit:https://github.com/leiflee/desd...
  • leiflyy
  • leiflyy
  • 2016年07月10日 13:44
  • 2297

DES算法代码

这是之前的一篇文章,今天才发现之前没有把内容放进来。真是晕头了。幸好看了看评论,有人指出来了。实在是不好意思。现在把代码补上来;声明,不是我自己完全原创的。也是从网上找到一个别人的东西,然后改造了一下...
  • bengold1979
  • bengold1979
  • 2008年03月23日 11:56
  • 13012

DES算法初探

本篇博客为阅读《深入浅出密码学——常用加密技术原理与应用》一书,内容有所参考和引用,部分图片和表格采用了原文,版权归原书和原作者所有,如有侵权请告知删除,在此表示感谢!DES算法是一种典型的对称加密算...
  • jaye16
  • jaye16
  • 2016年09月02日 09:10
  • 2749

DES算法详细实例与实现过程解析

如有疑问欢迎留言 参考网络资源用PYTHON把DES的流程走了一遍,以下为代码与解析,更为具体的细节可参照http://orlingrabbe.com/des.htm或维基百科 假...
  • boksic
  • boksic
  • 2011年10月22日 15:42
  • 16982

DES算法缺陷和改进

DES是个经典的算法,从1974年IBM发明DES算法开始,它应经被广泛应用全世界的金融服务和其他工业中,但是它的缺点也是很明显的。下面我们就从它的缺点说起。DES第一个缺点就是密钥长度过短。DES的...
  • yunnysunny
  • yunnysunny
  • 2010年11月06日 20:13
  • 6239

DES算法破解需要时间的解析

1.运用场景首先题目的描述是这个样子的:用DES算法加密一个64位的明文,其中秘钥的长度是56位。攻击者是知道明文和密文的,但是不知道秘钥是什么。假设攻击者每一秒中能做10的10次方个加密或者解密算法...
  • Grace_0642
  • Grace_0642
  • 2016年11月08日 18:11
  • 2920

Des算法的实现

之所以会来写这个,是觉得自己前一段时间一直在找关于DES加密算法的资料,确实有很多代码,但是不同代码得出的结果都不一样。这我就不能忍了,最后还是决定自己去写一份代码。然后就有了现在这个代码。     ...
  • qq_16906023
  • qq_16906023
  • 2015年08月25日 15:57
  • 286

DES 算法的使用

DES 算法简介DES 加密算法属于对称密码范畴,那么什么是对称密码呢?加密和解密过程中所使用的密钥相同,就是对称密码,而且大多数对称密码算法,加密解密过程都是互逆的。DES 算法是一种数据加密算法,...
  • Hwaphon
  • Hwaphon
  • 2016年08月11日 11:19
  • 4348

python 版DES和MAC算法

最近工作中需要用到python中的DES算法,虽然有现成的库,但总感觉用着不方便。于是把之前用的C和Java写的DES和MAC算法移植到python中。测试了下没问题。 这样以后就方便了,。在pyth...
  • qq8864
  • qq8864
  • 2014年10月16日 13:03
  • 1360

DES算法实现(C++版)

#include "memory.h" #include "stdio.h" enum {encrypt,decrypt};//ENCRYPT:加密,DECRYPT:解密 void des_run(c...
  • blue1244
  • blue1244
  • 2014年04月09日 16:24
  • 1881
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:DES算法
举报原因:
原因补充:

(最多只允许输入30个字)