样本方差为何除以n-1?

转载 2015年07月11日 08:58:06

方差的概念从小学就开始建立了。对于一个随机变量X\mu,\sigma^2分别表示其数学期望和方差,从中随机抽取n个样本X_1,X_2,\ldots,X_n\overline X=\sum_{i=1}^nX_i是样本均值,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2是样本方差。那么为什么样本方差是除以n-1而不是n呢?

  这里涉及到一个无偏估计的概念,X是随机变量,X_i,\overline X, S^2同样也是随机变量,其中\overline X,S^2是对X总体\mu,\sigma^2的一个估计,如果\overline X,S^2的期望分别等于\mu,\sigma^2的话,就说这种估计是无偏的。容易证明E(\overline X)=\mu,但是E(S^2)=E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2)=\sigma^2的证明就不是那么显而易见了,下面我证明给大家看。记D(X_i),E(X_i)X_i的方差和期望。


\large\begin{array}{rcl}<br />D(\overline X)&=&D(\frac1n\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}D(\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}(\sum_{i=1}^nD(X_i))\\[10pt]<br />&=&\frac{\sigma^2}n \\[10pt]<br />\\<br />E({\overline X}^2)&=&D(\overline X)+E^2(\overline X)\\<br />&=&\frac{\sigma^2}n+\mu^2 \\<br />\\<br />E(S^2)&=&E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i^2- 2 X_i{\overline X}+{\overline X}^2 ))\\[10pt]<br />\\<br />E(\sum_{i=1}^nX_i^2)&=&n E(X_i^2) \\<br /> &=& n(D(X_i)+E^2(X_i)) \\<br /> &=& n(\sigma^2+\mu^2) \\<br />\\<br />E(\sum_{i=1}^nX_i{\overline X})&=&E({\overline X}\sum_{i=1}^nX_i) \\[10pt]<br /> &=& nE({\overline X}^2)\\[10pt]<br /> &=& n(D(\overline X) + E^2(\overline X)) \\[10pt]<br /> &=& n(\frac{\sigma^2}{n}+\mu^2) \\[10pt]<br />\\<br />E(S^2) &=& \frac n{n-1}(\sigma^2+\mu^2)-\frac n{n-1}(\frac{\sigma^2}n+\mu^2) \\<br /> &=& \sigma^2 \\<br />\end{array}<br />
证毕

彻底理解样本方差为何除以n-1

设样本均值为,样本方差为,总体均值为,总体方差为,那么样本方差有如下公式:    很多人可能都会有疑问,为什么要除以n-1,而不是n,但是翻阅资料,发现很多都是交代到,如果除以n,对样本方差的估计不是...
  • Hearthougan
  • Hearthougan
  • 2017年09月06日 00:10
  • 5341

为什么样本方差要除以n-1

使用样本来无偏估计总体方差的时候,公式如下:为什么分母是n-1,而不是n呢?这直觉上不太对。其实,如果分母为n,也可以成为一个估计值,但是它不满足无偏这个条件。仅在除以n-1时才满足无偏这个条件。所以...
  • feliciafay
  • feliciafay
  • 2010年09月11日 20:17
  • 40110

为什么样本方差里面要除以(n-1)而不是n?

前段日子重新整理了一下“为什么样本方差里面要除以(n-1)而不是n?”这个问题的解答,跟大家分享一下,如果有什么错误的话希望大家能够提出来,我会及时改正的                   ...
  • fuming2021118535
  • fuming2021118535
  • 2016年05月01日 14:18
  • 29304

为什么样本方差公式中要除以n-1而不是n

在学习概率与数理统计时,我们接触到的比
  • iverain
  • iverain
  • 2014年08月24日 17:10
  • 4853

样本方差为何除以n-1

在重新学习统计学的过程中,我发现了一个被我忽视多年的问题,那就是总体方差是除以n,按理来说样本方差的分母也应该是除以n才对,而事实上,其分母却是除以n-1;我觉得这个问题还是值得研究一番的,在百度上搜...
  • Cynthiatsjclg
  • Cynthiatsjclg
  • 2015年07月25日 13:36
  • 1519

求方差时为什么要除以N—1,而不是除以N!【通俗理解-非数学专业】

抽样,实际上也就是通过样本去估计总体,用样本去估计总体。当然就要评估估计的好坏如何,第一个评估方面就是先要评估这个估计是有偏估计还是无偏估计,无偏估计更为有效。该问题就是牵涉到这一点,除以n所得到的样...
  • guomutian911
  • guomutian911
  • 2016年01月24日 10:10
  • 1025

mahout 计算方差标准差

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均...
  • u010011737
  • u010011737
  • 2016年07月14日 14:31
  • 882

求方差时除以n和n-1的区别

我们通常所说的方差有两种,一种是样本方差,一种是总体方差。当求样本方差的时候,分母是n-1;当求总体方差的时候,分母是n。在数理统计中,一般所求的都是样本方差,这就需要构造一个统计量样本方差S^2(注...
  • Love_CppAndC
  • Love_CppAndC
  • 2012年01月06日 17:27
  • 9752

n个样本的数据的标准差为什么除以n-1

今天看PC的一个文章的时候作者提到了,我们知道一组数比如 求它的标准差,我们知道公式是: 分母为什么是n-1而不是n呢? 这个问题需要我们从统计学的知识开始说起来,统计学就是通过对一部分数据...
  • silence1214
  • silence1214
  • 2012年09月24日 14:18
  • 13600

样本方差的无偏估计与(n-1)的由来

原文出处: http://blog.sina.com.cn/s/blog_c96053d60101n24f.html 在PCA算法中用到了方差,协方差矩阵,其中方差公式为,协方差矩阵公式为,当时不明白...
  • maoersong
  • maoersong
  • 2014年03月22日 20:06
  • 12710
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:样本方差为何除以n-1?
举报原因:
原因补充:

(最多只允许输入30个字)