样本方差为何除以n-1?

转载 2015年07月11日 08:58:06

方差的概念从小学就开始建立了。对于一个随机变量X\mu,\sigma^2分别表示其数学期望和方差,从中随机抽取n个样本X_1,X_2,\ldots,X_n\overline X=\sum_{i=1}^nX_i是样本均值,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2是样本方差。那么为什么样本方差是除以n-1而不是n呢?

  这里涉及到一个无偏估计的概念,X是随机变量,X_i,\overline X, S^2同样也是随机变量,其中\overline X,S^2是对X总体\mu,\sigma^2的一个估计,如果\overline X,S^2的期望分别等于\mu,\sigma^2的话,就说这种估计是无偏的。容易证明E(\overline X)=\mu,但是E(S^2)=E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2)=\sigma^2的证明就不是那么显而易见了,下面我证明给大家看。记D(X_i),E(X_i)X_i的方差和期望。


\large\begin{array}{rcl}<br />D(\overline X)&=&D(\frac1n\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}D(\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}(\sum_{i=1}^nD(X_i))\\[10pt]<br />&=&\frac{\sigma^2}n \\[10pt]<br />\\<br />E({\overline X}^2)&=&D(\overline X)+E^2(\overline X)\\<br />&=&\frac{\sigma^2}n+\mu^2 \\<br />\\<br />E(S^2)&=&E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i^2- 2 X_i{\overline X}+{\overline X}^2 ))\\[10pt]<br />\\<br />E(\sum_{i=1}^nX_i^2)&=&n E(X_i^2) \\<br /> &=& n(D(X_i)+E^2(X_i)) \\<br /> &=& n(\sigma^2+\mu^2) \\<br />\\<br />E(\sum_{i=1}^nX_i{\overline X})&=&E({\overline X}\sum_{i=1}^nX_i) \\[10pt]<br /> &=& nE({\overline X}^2)\\[10pt]<br /> &=& n(D(\overline X) + E^2(\overline X)) \\[10pt]<br /> &=& n(\frac{\sigma^2}{n}+\mu^2) \\[10pt]<br />\\<br />E(S^2) &=& \frac n{n-1}(\sigma^2+\mu^2)-\frac n{n-1}(\frac{\sigma^2}n+\mu^2) \\<br /> &=& \sigma^2 \\<br />\end{array}<br />
证毕

相关文章推荐

为什么样本方差公式中要除以n-1而不是n

在学习概率与数理统计时,我们接触到的比
  • iverain
  • iverain
  • 2014年08月24日 17:10
  • 4077

为什么样本方差(sample variance)的分母是 n-1?

来源:http://www.zhihu.com/question/20099757 我来补充一个新的视角吧,希望能帮助理解。 有很多人提到了“自由度”的概念。那么自由度是什么?说的好玄乎,什么...

估计子的性能——从最大似然估计到方差定义式为什么以n-1作为分母

我们都知道,给定N个一维实数空间上的样本点{ xi,i=1,2,3... },假定样本点服从单峰高斯分布,那么,最大似然估计的参数表达式为: 期望:   方差: 可是,你是否注意过,在我们...

样本协方差矩阵

  • 2014年08月14日 08:39
  • 225KB
  • 下载

高维数据样本集的协方差矩阵的求解及算法实现

步骤: 1、获取样本集矩阵(本文中行表示样本,列表示维度) void PCA::orMatrix(int _sapNum, int _dimt) { //初始样本集矩阵 sapNum_ = _s...

总体方差与样本方差

今天在计算一类数据的协方差时遇到个问题。数据如下: x1=(0,0,0)’ x2=(1,0,0)’ x3=(1,0,1)’ x4=(1,1,0)’ 这本是一件很容易的事,但我手算后用Matl...

总体,个体,抽样,样本,样本容量,随机变量,期望,方差,离差,残差

开博第一篇先回顾下数据分析涉及到的统计学中最基本的概念,包含了以下几个概念:总体,个体,抽样,样本,样本容量。   1 总体 本小节所探讨的总体的概念,特指在统计学中的“总体”。统计学中的“总体”,或...
  • myl1992
  • myl1992
  • 2015年05月17日 11:17
  • 955

协方差最大似然估计为什么比实际协方差小一点 E(ΣML)=(N-1)/N * Σ

我们都知道,给定N个一维实数空间上的样本点{ xi,i=1,2,3... },假定样本点服从单峰高斯分布,那么,最大似然估计的参数表达式为: 期望:   方差: 可是,你是否注意过,在我们从小接受...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:样本方差为何除以n-1?
举报原因:
原因补充:

(最多只允许输入30个字)