关闭

样本方差为何除以n-1?

105人阅读 评论(0) 收藏 举报

方差的概念从小学就开始建立了。对于一个随机变量X\mu,\sigma^2分别表示其数学期望和方差,从中随机抽取n个样本X_1,X_2,\ldots,X_n\overline X=\sum_{i=1}^nX_i是样本均值,S^2=\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2是样本方差。那么为什么样本方差是除以n-1而不是n呢?

  这里涉及到一个无偏估计的概念,X是随机变量,X_i,\overline X, S^2同样也是随机变量,其中\overline X,S^2是对X总体\mu,\sigma^2的一个估计,如果\overline X,S^2的期望分别等于\mu,\sigma^2的话,就说这种估计是无偏的。容易证明E(\overline X)=\mu,但是E(S^2)=E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2)=\sigma^2的证明就不是那么显而易见了,下面我证明给大家看。记D(X_i),E(X_i)X_i的方差和期望。


\large\begin{array}{rcl}<br />D(\overline X)&=&D(\frac1n\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}D(\sum_{i=1}^nX_i)\\[10pt]<br />&=&\frac1{n^2}(\sum_{i=1}^nD(X_i))\\[10pt]<br />&=&\frac{\sigma^2}n \\[10pt]<br />\\<br />E({\overline X}^2)&=&D(\overline X)+E^2(\overline X)\\<br />&=&\frac{\sigma^2}n+\mu^2 \\<br />\\<br />E(S^2)&=&E(\frac1{n-1}\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i-\overline X )^2) \\[10pt]<br /> &=& \frac1{n-1}E(\sum_{i=1}^n(X_i^2- 2 X_i{\overline X}+{\overline X}^2 ))\\[10pt]<br />\\<br />E(\sum_{i=1}^nX_i^2)&=&n E(X_i^2) \\<br /> &=& n(D(X_i)+E^2(X_i)) \\<br /> &=& n(\sigma^2+\mu^2) \\<br />\\<br />E(\sum_{i=1}^nX_i{\overline X})&=&E({\overline X}\sum_{i=1}^nX_i) \\[10pt]<br /> &=& nE({\overline X}^2)\\[10pt]<br /> &=& n(D(\overline X) + E^2(\overline X)) \\[10pt]<br /> &=& n(\frac{\sigma^2}{n}+\mu^2) \\[10pt]<br />\\<br />E(S^2) &=& \frac n{n-1}(\sigma^2+\mu^2)-\frac n{n-1}(\frac{\sigma^2}n+\mu^2) \\<br /> &=& \sigma^2 \\<br />\end{array}<br />
证毕

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:186次
    • 积分:5
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章存档