《Python机器学习算法》勘误

本书在出版过程中已进行详细检查,但仍发现一些错误。勘误包括但不限于Python代码修正、数学公式调整、文字错误更正等,涉及多个章节。感谢读者们的细致反馈。

本书在出版的过程中已经经过详细的检查,但是大小问题依旧存在,感谢各位细心的读者为本书指出的错误。

  • 第34页的错误在Python2.7.9版本上不会报错。

第1版第一次印刷勘误

页码原文修改
XVI(目录)12.3.2 Mean shift12.3.2 DBSCAN
26(程序清单1-11:第11行)hresult
33(程序清单2-3:第8行参数)feature, label, k, 5000, 0.2feature, label, k, 10000, 0.4
34(开始的代码:第9行)floatint
45(公式第二行)12ni=1nj=i+112∑i=1n∑j=i+1n12ni=1nj=112∑i=1n∑j=1n
46(整页的四处)[1σ(y^y)][1−σ(y^y)][σ(y^y)1][σ(y^y)−1]
48(文本的第三行)度超参数
48(程序清单3-2:第4行)FM模型的度FM模型的超参数
49(文本的第二行)模型的度模型的超参数
50(程序清单3-5:第8行)labelTrain, 3, 5000, 0.01labelTrain, 3, 10000, 0.01
52(程序清单3-7:倒数第2行)result.append(str(pre))result.append(pre)
55(程序清单3-10:第3行)data.txttest_data.txt
57(程序清单3-13:第7行)f.write(“\n”.join(result))f.write(“\n”.join(str(x) for x in result))
68(4.4.2中第一个公式:高斯核的分子)X(i)X(j)‖X(i)−X(j)‖X(i)X(j)2‖X(i)−X(j)‖2
70(中间公式W(α2)W(α2)的第二行)((M2α2y(2))+α2)((M2−α2y(2))+α2)((M2α2y(2))y(1)+α2)((M2−α2y(2))y(1)+α2)
70(最下面公式)(K11+K22α22K12)α2(K11+K22α2−2K12)α2(K11+K222K12)α2(K11+K22−2K12)α2
104(代码的第14行)data_tmp.append(data[i][fea])data_tmp.append(data[index[i]][fea])
104(代码的第15行)data_tmp.append(data[i][-1])data_tmp.append(data[index[i]][-1])
133(程序清单6-14:第13、17行)dataTestdata
141(7.3中第3行)然后把二次模型然后把二次函数
147(程序清单7-7:第11行)80050
150(程序清单7-10:第3行)data.txtdata_test.txt
152(7.5.1中的高斯核中的分子)XiX|Xi−X|XiX2‖Xi−X‖2
160(第10行公式)B1k+1=(IskyTkyTksk)TB1k(IyksTkyTksk)+sksTkyTkskBk+1−1=(I−skykTykTsk)TBk−1−(I−ykskTykTsk)+skskTykTskB1k+1=(IskyTkyTksk)TB1k(IyksTkyTksk)+sksTkyTkskBk+1−1=(I−skykTykTsk)TBk−1(I−ykskTykTsk)+skskTykTsk
160(第12行公式)Hk+1=(IskyTkyTksk)THk(IyksTkyTksk)+sksTkyTkskHk+1=(I−skykTykTsk)THk−(I−ykskTykTsk)+skskTykTskHk+1=(IskyTkyTksk)THk(IyksTkyTksk)+sksTkyTkskHk+1=(I−skykTykTsk)THk(I−ykskTykTsk)+skskTykTsk
198(程序清单10-5:第16行)争取穷正无穷
219(最后一行文本)如图11.4所示如图11.7所示
224(第一行文本:两处)图12.2图12.3
230本处遗忘了distance函数请参阅代码中的distance函数
234(小标题12.3.2)Mean ShiftDBSCAN
237(13.1.1下第2行)节点,之间节点之间
31618.4.1下import代码下面增加batch_size = 128

第1版第二次印刷勘误

页码原文修改
17Wj=Wj+αWj(lW,b)Wj=Wj+α▽Wj(lW,b)Wj=WjαWj(lW,b)Wj=Wj−α▽Wj(lW,b)
29中间的θjJ(θ)▽θjJ(θ),很多读者反应看不懂,对其进行修改
θjJ(θ)=1mi=1m[θjj=1kI{y(i)=j}logeθTjX(i)kl=1eθTlX(i)]▽θjJ(θ)=−1m∑i=1m[▽θj∑j=1kI{y(i)=j}logeθjTX(i)∑l=1keθlTX(i)]
y(i)=jy(i)=j时,
θjJ(θ)=1mi=1m[kl=1eθTlX(i)eθTjX(i)kl=1eθTlX(i)X(i)]▽θjJ(θ)=−1m∑i=1m[∑l=1keθlTX(i)−eθjTX(i)∑l=1keθlTX(i)⋅X(i)]
y(i)jy(i)≠j时,
θjJ(θ)=1mi=1m[eθTjX(i)kl=1eθTlX(i)X(i)]▽θjJ(θ)=−1m∑i=1m[−eθjTX(i)∑l=1keθlTX(i)⋅X(i)]
29θj=θj+αθjJ(θ)θj=θj+α▽θjJ(θ)θj=θjαθjJ(θ)θj=θj−α▽θjJ(θ)
47最后一行np.mat(dataTrain)np.mat(dataMatrix)
303图17.8下第6行“自编码圣经网络”自编码神经网络
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值