Fleury (弗罗莱) 算法通俗解释

原创 2014年12月23日 17:19:50

Fleury (弗罗莱) 算法通俗解释

1.定义


2.举例说明

图2为连通图G,现利用Fleury算法求它的欧拉通路。(注意区分:欧拉通路、欧拉回路)


其中一种欧拉通路如下:4 5 8 7 6 8 9 1 5 3 2 4 6,其搜索路径如下图所示:


现在让我们来分析算法实现过程:

         假设我们这样走:4,6,8,5,此时在5处有三种选择(3,4,1),那么哪种能走通哪种走不通呢?答案是(3,4)通,1不通。为什么呢?来看下图…


分析:

         因为(5~1)之间的边是除去已走过边(E(G)-{E1(4~6),E2(6~8),E3(8~5)})图G的一个桥,所谓桥即去掉该边后,剩下的所有顶点将不能够连通,即无法构成连通图。

而选择(5~3)和(5~4)则满足定义中第二条(b)中的要求。当然当(5~3)和(5~4)都不存在,即定义中所说“除非无别的边可供选择时”,此时就就可以选择(5~1),其他情况下一定要优先选择非桥的边,否则就可能出现无法走通的情况。也就是说该搜索方法无法构成欧拉通路。如下图是选择(5~1)的后果:


而(5~3)和(5~4)则可以顺利完成欧拉图通路的搜索,具体算法实现网上很多,不是本文讨论重点。相信有了算法思想,算法的实现应该不难,有时间我会完善代码。

另外:譬如洒水车问题也是利用欧拉通路解决的经典问题。

参考文章:http://www.cnblogs.com/Lyush/archive/2013/04/22/3036659.html

 

Fleury算法求欧拉回路(一)

求解欧拉回路,是《离散数学》中的一个算法,一共有两种算法,一种是Fleury算法,另外一种是逐步插入回路法, 本文讲的是Fleury算法,是一个教你如何用最简单的数组去实现这个算法,代码中没有任何的栈...
  • p011235
  • p011235
  • 2015年09月27日 22:53
  • 3402

弗罗莱(Fleury)算法 欧拉(Euler)通路/回路

1、基本概念: (1)欧拉图的基本概念: 欧拉通路 (欧拉迹):通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹):通过图中每条边一次且仅一次,并且过每一顶点的回路。...

欧拉回路的求解(dfs和fleury算法)

欧拉回路的求解 欧拉回路的求解主要有两种方法:DFS 搜索及Fleury(佛罗莱)算法。本节分别介绍这两种方法。 DFS 搜索求解欧拉回路 用DFS 搜索思想求解欧拉回路的思路为:利用欧拉定理判断出一...

【资料】Fluery's Algorithm( 用于查找Euler path 和Euler circuit)

复习discrete math 看了老师的课件感觉不靠普,在百度上也找不到好的科普贴, 只能从国外的网站上扒下来生肉,看英文贴还是挺舒服的= = 所以直接:点击打开链接 Introduction...

Fluery算法

以下摘自http://www.cnblogs.com/Lyush/archive/2013/04/22/3036659.html上面是摘自图论书上的定义。算法在运行过程中删除了所有已走的路径,也就是说...

弗罗莱(fleury)算法-欧拉回路生成算法

弗罗莱算法是生成欧拉回路的算法之一,今天在
  • zjx409
  • zjx409
  • 2014年04月08日 22:57
  • 4156

弗罗莱(Fleury)算法,求欧拉(Euler)通路/回路

1、基本概念: (1)定义 欧拉通路 (欧拉迹)—通过图中每条边一次且仅一次,并且过每一顶点的通路。 欧拉回路 (欧拉闭迹)—通过图中每条边一次且仅一次,并且过每一顶点的回路。 欧拉图—存在欧...

Fleury(佛罗莱)算法求欧拉回路的学习

欧拉回路:简单来说,就是经过图G的每条边一次且仅一次,回到出发点的路径就叫欧拉回路; 我就直接上模板了。。。。 View Code 1 #include 2 #include 3...
  • zjsyhjh
  • zjsyhjh
  • 2014年05月26日 17:53
  • 851

欧拉回路(佛罗莱算法)

 若图G中存在这样一条路径,使得它恰通过G中每条边一次,则称该路径为欧拉路径。若该路径是一个圈,则称为欧拉(Euler)回路。 具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉路径但不具有欧拉...

最优二叉查找树详解(算法导论学习笔记)

代码均未经过严格测试,仅供参考最优二叉查找树动态规划原理动态规划与分治法相似,都是通过组合子问题的解来求解原问题。动态规划通常是用来求解最优化问题(optimization problem).这类问...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Fleury (弗罗莱) 算法通俗解释
举报原因:
原因补充:

(最多只允许输入30个字)