Windows中如何在Visual Studio 2015环境里编译OpenCV 3.1并加入opencv_contrib-master

原创 2016年06月01日 12:24:15

已有环境:

windows 7

Visual Studio 2015 (笔者用的是VS2015Community)—— msvc 14.0

CMake 3.5.2

已有安装文件:

OpenCV 3.1 源码sources(通过解压opencv3.1压缩包  获得,其中还有已经编译好的文件(build),这里重新编译,因此用不到)

OpenCV 3.1 附属包opencv_contrib-master(https://github.com/Itseez/opencv_contrib


编译安装步骤:

1.打开CMake-gui,并配置sources(OpenCV3.1 源码sources文件夹的路径)和build路径(根据自己要求设定,不要和之前下载的压缩包中已经编译好的build文件夹相同,笔者放在buildx64文件夹中),点击configure,选择Visual Studio 14 2015 Win64, 点击finish


2.等待第一次配置完成, 出现红色区域,表示配置结果待确认, 在红色区域找到变量:OPENCV_EXTRA_MODULES_PATH ,并将其值设置为:OpenCV3.1的附属包中的modules文件夹路径(笔者放在E:\opencv\opencv_contrib-master\opencv_contrib-master\modules), 再次点击configure,红色消失,表示配置正确. 然后点击 Generate, 当出现generate done,表示配置成功,生成cmake文件




3. 如果在第一次点击configure 以后, 状态栏中出现需要download的模块的时候,并且下载失败,可以直接搜索相应模块文件放入相应文件夹中; 或如果对应项不是你项目必需的,则可以将取消安装该模块,如下图,反选对应的模块.



4. 打开VS2015 导入 cmake 生成的编译文件夹buildx64中的 OpenCV.sln 解决方案



5. 选择菜单Build-> Batch Build, 选择ALL_BUILD和INSTALL 的debug 和release 进行编译



6. 编译成功以后,添加环境变量,将E:\opencv\buildx64\install 添加到环境变量中。



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Caffe for Python 官方教程(翻译)

导言       本教程中,我们将会利用Caffe官方提供的深度模型——CaffeNet(该模型是基于Krizhevsky等人的模型的)来演示图像识别与分类。我们将分别用CPU和GPU来进行演示,并对...
  • jnulzl
  • jnulzl
  • 2016-07-31 14:45
  • 24121

caffe python批量抽取图像特征

原始的caffe教程提供单张图片的抽取,这里我们谈下如何用python批量抽取特征。

caffe 练习4 ----利用python批量抽取caffe计算得到的特征------by 香蕉麦乐迪

1 首先使用已经训练好的module First, import required modules, set plotting parameters, and run ./scripts/downlo...

win7 64位环境下VS2010编译使用boost_1_62_0

参考:http://jingyan.baidu.com/article/dca1fa6f768d76f1a4405289.html 从boost官网(http://www.boost.org/)下...

windows 下编译64位的 Boost 1. 61. 0

一直以来都是在Win32环境下Build和使用boost,但现在基本上每天都在64位Win7下工作,所以很有必要把这几天的经验总结下来。和32位环境不同,x64环境下编译得先从开始菜单启动Visual...

学习TensorFlow,打印输出tensor的值

在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候。也许你会说,这个很容易啊,直接print就可以了。其实不然,print只能打印输出sh...

提取caffe前馈的中间结果+逐层可视化

参考官方网址:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb 当...

caffe源码修改:抽取任意一张图片的特征

目前caffe不是很完善,输入的图片数据需要在prototxt指定路径。但是我们往往有这么一个需求:训练后得到一个模型文件,我们想拿这个模型文件来对一张图片抽取特征或者预测分类等。如果非得在proto...

caffe 提取特征并可视化(已测试可执行)及在线可视化

参考主页: http://lijiancheng0614.github.io/2015/08/21/2015_08_21_CAFFE_Features/ http://nbviewer.ipyth...

编译并使用boost库(win7+boost1.63+vs2015+32位or 64位)

编译并使用boost库(win7+boost1.63+vs2015+32位or 64位)
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)