海量数据相似查找系列1 -- Minhashing & LSH & Simhash 技术汇总

本文介绍了在处理高维稀疏数据时,如何利用Minhashing、LSH(局部敏感哈希)和Simhash技术进行快速相似查找。Minhashing用于将高维数据降低到低维空间,LSH进一步通过哈希策略减少相似度计算的时间复杂度,Simhash则将文本映射为固定长度的二进制串,便于高效地进行去重和相似性判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

范涛
发表于2017-04-19

最近把海量数据如何进行相似查找技术进行个大体汇总,包括高维稀疏数据和稠密数据。
这一节重点针对高维稀疏数据情况,说如何通过哈希技术进行快速进行相似查找。
试想个案例,就拿推荐系统中item-user矩阵说事。如果你有item数量是百万级别,user是千万级别,这个矩阵是十分稀疏的。你如何计算每一个item的Top N相似item呢? 
同样海量文本场景,文本集合可以看成doc-word 稀疏矩阵,如何求解每个文档的Top N相似文档?
如果采用两两比较的话,至少有两个问题:(1) O(n^2) 遍历比较时间复杂度; (2) 两个高维向量之间计算相似度,比如jaccard相似度,时间很耗时。
那如何解决呢? 第一反应是用倒排啊。的确倒排能把上面的时间复杂度降低好几个数量级。但是上面提到的第二个问题却还是存在的。并且当文本数量级达到一定数量级时候,倒排拉链过长,效率也会下降。
所以这章重点说下基于哈希的方法,这种方法通过牺牲一定精度来换取时间上大幅提升。

一 Minhashing
先从Minhas
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值