海量数据相似查找系列2 -- Annoy算法

本文介绍了Annoy算法,用于稠密向量的快速相似查找。Annoy通过建立二叉树实现近似最近邻搜索,算法包括建立索引、查询过程和返回近邻节点。文章还讨论了处理查询结果不足Top N和相近数据节点被分割的问题,以及Annoy的实际效果和源码摘要。
摘要由CSDN通过智能技术生成
范涛
发表于2017-04-19

上面一章说了下高维稀疏数据如何通过learning to hash的方法来进行相似查找,这种主要想说下另外一种情况,稠密向量如何进行快速相似查找呢?还是以文本为例吧。之前提到过文本的paragraph2vector的向量表示,以及词word2vector向量表示形式。一旦文档变成这种稠密向量形式,那如何从海量文本中快速查找出相似的Top N 文本呢?
所以这里重点想说下Annoy( Approximate Nearest Neighbors  Oh Yeah )这个快速算法,这个在实际应用中发现无论计算速度和准确性都非常不错。


一 算法原理

以2D数据为例来介绍Annoy算法,下面一个2D数据分布图:



1  建立索引过程

Annoy的目标是建立一个数据结构,使得查询一个点的最近邻点的时间复杂度是次线性。Annoy 通过建立一个二叉树来使得每个点查找时间复杂度是O(log n)。 看下面这个图, 随机选择两个点,以这两个节点为初始中心节点,执行聚类数为2的kmeans过程,最终产生收敛后两个聚类中心点。这两个聚类中心点之间连一条线段(灰色短线),建立一条垂直于这条灰线,并且通过灰线中心点的线(黑色粗线)。这条黑色粗线把数据空间分成两部分。在多维空间的话,这条黑色粗线可以看成等距垂直超平面。






在划分的子空间内进行不停的递归迭代继续划分,知道每个子空间最多只剩下K个数据节点。
### 回答1: Annoy算法是一种快速的近似最近邻搜索算法,它使用可用的空间换取时间,以抗击高维空间中的维数灾难。它通过将搜索空间划分为多个维度,以构建一个索引来加快搜索速度,利用预选定的属性来排序搜索结果。它通过计算欧式距离来查找最近邻,同时考虑多个预定义的属性,而不仅仅考虑空间坐标。 ### 回答2: Annoy算法是一种用于高效近似最近邻搜索的算法。该算法的设计目标是在大规模数据集上进行快速检索,以找到与给定查询向量最相似的K个数据点。该算法的效率来源于其对索引结构的优化以及使用了一种称为“近似k最近邻(approximate k nearest neighbors)”的策略。 在Annoy算法中,数据被组织成一个状结构,每个节点都有一个分裂轴和一个分裂值。根节点是整个数据集的中心,而每个叶子节点都包含一个或多个数据点。通过不断递归地将数据集分割成两个子集,直到达到叶子节点的条件为止,就构建了这个状结构。 当进行查询时,Annoy算法会从的根节点开始,根据查询向量的特征值与节点的分裂轴和分裂值进行比较,确定下一步向哪个子节点搜索。这个过程将根据节点中数据点与查询向量的相似度进行排序,并保留与查询向量最相似的K个数据点。 在Annoy算法中,为了进一步提高搜索效率,使用了一种“随机近似”的策略。该策略包括在查询过程中仅搜索空间中的一部分数据点,而不是遍历整个数据集。这样一来,通过牺牲一定的搜索精度,大大减少了搜索的时间复杂度。 总的来说,Annoy算法通过构建状结构和随机近似的策略,实现了在大规模数据集上进行高效的近似最近邻搜索。它被广泛应用于推荐系统、图像搜索、语音处理等领域,并取得了较好的效果。 ### 回答3: Annoy算法是一种用于近似最近邻搜索的高效算法。它通过将高维数据映射到低维空间中,然后使用一种快速的近似搜索技术来找到最近的数据点。 Annoy算法的核心思想是使用二叉进行数据的划分。首先,选择一个向量作为根节点,并将其他向量分配到它的左右子节点中。然后,对每个节点递归地执行同样的操作,直到达到停止条件。在构建的过程中,可以选择不同的划分策略,例如最大方差、ランダム划分等。 一旦被构建完成,我们可以利用的结构来进行近似搜索。给定一个查询向量,我们可以根据其与根节点的距离选择相应的子节点进行下一步的搜索。通过重复这个过程,直到达到叶子节点,我们可以得到一个候选的最近邻集合。最后,我们对候选集合进行进一步搜索,找到真正的最近邻。 Annoy算法在进行最近邻搜索时具有一定的误差,但是它的效率非常高。相比于准确的最近邻算法,它大大降低了计算复杂度,特别适用于大规模数据集。 总结起来,Annoy算法是一种基于二叉的近似最近邻搜索方法。它通过将高维数据映射到低维空间中,并利用的结构进行搜索,从而实现了高效的最近邻搜索。该算法的优势在于能够在大规模数据集上取得较好的近似结果,并且具有较低的计算复杂度。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值