0 预备知识
l 设离散型随机变量X的分布律为
则称 为X的数学期望或均值
l 设连续型随机变量X的概率密度函数(PDF)为
其数学期望定义为
l 称为随机变量X的方差,
称为X的标准差
l 正态分布 ~
概率密度函数
l 设(X, Y)为二维随机变量,若存在,则称其为随机变量X和Y的协方差,记为
本文介绍了高斯混合模型(GMM)及其与单高斯模型(SGM)的区别,详细阐述了GMM的参数估计过程,包括EM算法的E步和M步。同时,还讲解了K-means算法的聚类步骤和收敛条件,帮助理解两种不同的数据建模方法。
l 设离散型随机变量X的分布律为
则称 为X的数学期望或均值
l 设连续型随机变量X的概率密度函数(PDF)为
其数学期望定义为
l 称为随机变量X的方差,
称为X的标准差
l 正态分布 ~
概率密度函数
l 设(X, Y)为二维随机变量,若存在,则称其为随机变量X和Y的协方差,记为

被折叠的 条评论
为什么被折叠?