关闭

数据结构—图

标签: 数据结构C++图的定义图的存储结构
562人阅读 评论(0) 收藏 举报
分类:

 数据结构—图

图(Graph)是一种比线性表和树更为复杂的数据结构。

线性结构:是研究数据元素之间的一对一关系。在这种结构中,除第一个和最后一个元素外,任何一个元素都有唯一的一个直接前驱和直接后继。 

树结构:是研究数据元素之间的一对多的关系。在这种结构中,每个元素对下(层)可以有0个或多个元素相联系,对上(层)只有唯一的一个元素相关,数据元素之间有明显的层次关系。

图结构:是研究数据元素之间的多对多的关系。在这种结构中,任意两个元素之间可能存在关系。即结点之间的关系可以是任意的,图中任意元素之间都可能相关。

  (一)图的定义和术语

一个图(G)是由二个集合V和E构成的二元组,记为G=(V,E) 。其中:V是图中顶点(Vertex)的非空有限集合;E是图中边的有限集合。从数据结构的逻辑关系角度来看,图中任何一个顶点都有可能与图中其他顶点有关系,而图中所有定点都有可能与某一顶点有关系。将顶点集合为空的图称为空图。其形式化定义为:

G=(V ,E)

V={v|vÎdata object}

E={<v,w>| v,wÎV∧p(v,w)}

P(v,w)表示从顶点v到顶点w有一条直接通路。

弧(Arc) :表示两个顶点v和w之间存在一个关系,用顶点偶对<v,w>表示。通常根据图的顶点偶对将图分为有向图和无向图。

有向图(Digraph)若图中每条边都是有方向的(图G的关系集合E(G)中,顶点偶对<v,w>的v和w之间是有序的),称图G是有向图。在有向图中,若<v,w>ÎE(G) ,表示从顶点v到顶点w有一条弧。 其中:v称为弧尾(tail)或始点(initial node)w称为弧头(head)或终点(terminal node) 。                 

无向图(Undigraph)若图中每条边都是无方向的(图G的关系集合E(G)中,顶点偶对<v,w>的v和w之间是无序的)称图G是无向图。在无向图中,若"<v,w>ÎE(G) ,有<w,v>ÎE(G) ,即E(G)是对称,则用无序对(v,w) 表示vw之间的一条边(Edge),因此(v,w) (w,v)代表的是同一条边。

例1:设有有向图G1和无向图G2,形式化定义分别是:

G1=(V1 ,E1)

V1={a,b,c,d,e}

E1={<a,b>,<a,c>, <a,e>,<c,d>,<c,e> ,<d,a>,<d,b>,<e,d>}

G2=(V2 ,E2)

V2={a,b,c,d}

E2={(a,b), (a,c), (a,d), (b,d), (b,c), (c,d)}

它们所对应的图如图所示。


完全无向图对于无向图,若图中顶点数为n ,用e表示边的数目,则e Î[0,n(n-1)/2] 。具有n(n-1)/2条边的无向图称为完全无向图。完全无向图另外的定义是:对于无向图G=(VE),若"vivj Î,当vivj时,有(vi ,vj)ÎE,即图中任意两个不同的顶点间都有一条无向边,这样的无向图称为完全无向图。

完全有向图对于有向图,若图中顶点数为n ,用e表示弧的数目,则eÎ[0,n(n-1)] 。具有n(n-1)条边的有向图称为完全有向图.完全有向图另外的定义是:对于有向图G=(VE),若"vivjÎV,当vi≠vj,有<vi ,vj>ÎE∧<vj , vi >ÎE ,即图中任意两个不同的顶点间都有一条弧,这样的有向图称为完全有向图。

有很少边或弧的图(e<n㏒n)的图称为稀疏图,反之称为稠密图

权(Weight):与图的边和弧相关的数。权可以表示从一个顶点到另一个顶点的距离或耗费。

子图和生成子图设有图G=(V,E)和G’=(V’,E’),若V’ÌV且E’ÌE ,则称图G’是G的子图;若V’=V且E’ÌE,则称图G’是G的一个生成子图。

顶点的邻接(Adjacent)对于无向图G=(V,E),若边(v,w)ÎE,则称顶点v和w 互为邻接点,即v和w相邻接。边(v,w)依附(incident)与顶点v和w 。

对于有向图G=(V ,E),若有向弧<v,w>ÎE,则称顶点v “邻接到”顶点w,顶点w “邻接自”顶点v ,弧<v,w> 与顶点v和w “相关联” 。

顶点的度、入度、出度:对于无向图G=(V,E),"viÎV,图G中依附于vi的边的数目称为顶点vi的度(degree),记为TD(vi)。

显然,在无向图中,所有顶点度的和是图中边的2倍。 即   ∑TD(vi)=2e      i=1, 2, , n e为图的边数。

对有向图G=(V,E),若"vi ÎV ,图G中以vi作为起点的有向边(弧)的数目称为顶点vi的出度(Outdegree),记为OD(vi) ;以vi作为终点的有向边(弧)的数目称为顶点vi的入度(Indegree),记为ID(vi) 。顶点vi的出度与入度之和称为vi的度,记为TD(vi) 。即TD(vi)=OD(vi)+ID(vi) 

路径(Path)、路径长度、回路(Cycle) 对无向图G=(V,E),若从顶点vi经过若干条边能到达vj,称顶点vi和vj是连通的,又称顶点vi到vj有路径

对有向图G=(V,E),从顶点vi到vj有有向路径,指的是从顶点vi经过若干条有向边(弧)能到达vj。或路径是图G中连接两顶点之间所经过的顶点序列。即  

Path=vi0vi1…vim ,vijÎV且(vij-1, vij)ÎE   j=1,2, …,m 或  

Path=vi0vi1 …vim ,vijÎV且<vij-1, vij>ÎE  j=1,2, …,m 

路径上边或有向边(弧)的数目称为该路径的长度

在一条路径中,若没有重复相同的顶点,该路径称为简单路径;第一个顶点和最后一个顶点相同的路径称为回路(环);在一个回路中,若除第一个与最后一个顶点外,其余顶点不重复出现的回路称为简单回路(简单环)

连通图、图的连通分量对无向图G=(V,E),若"vi ,vj ÎV,vi和vj都是连通的,则称图G是连通图,否则称为非连通图。若G是非连通图,则极大的连通子图称为G的连通分量。 

对有向图G=(V,E),若"vi ,vj ÎV,都有以vi为起点, vj 为终点以及以vj为起点,vi为终点的有向路径,称图G是强连通图,否则称为非强连通图。若G是非强连通图,则极大的强连通子图称为G的强连通分量。 

“极大”的含义:指的是对子图再增加图G中的其它顶点,子图就不再连通

生成树、生成森林一个连通图(无向图)的生成树是一个极小连通子图,它含有图中全部n个顶点和只有足以构成一棵树的n-1条边,称为图的生成树,如图所示。


关于无向图的生成树的几个结论:

 ◆ 一棵有n个顶点的生成树有且仅有n-1条边;

 ◆ 如果一个图有n个顶点和小于n-1条边,则是非连通图;

 ◆ 如果多于n-1条边,则一定有环;

 ◆ 有n-1条边的图不一定是生成树。

有向图的生成森林是这样一个子图,由若干棵有向树组成,含有图中全部顶点。

有向树是只有一个顶点的入度为0 ,其余顶点的入度均为1的有向图,如图7-3所示。

网:每个边(或弧)都附加一个权值的图,称为带权图。带权的连通图(包括弱连通的有向图)称为网或网络。网络是工程上常用的一个概念,用来表示一个工程或某种流程,如图7-4所示。


(二)图的存储结构

 存储结构

    1.邻接矩阵表示法:

    利用一个矩阵来表示图中顶点之间的关系,反映的是顶点间的相邻关系。一个n行n列的矩阵表示由n个顶点的图,如果(i,j)或者<i,j>属于边集合,则矩阵中第i行j列的值为1,否则为0。图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。

    设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:




例如:的邻接矩阵为

看一个实例,下图左就是一个无向图。


      从邻接矩阵的定义可以推断,无向图的邻接矩阵是对称的;有向图的邻接矩阵是则不具备该性质

      借助于邻接矩阵,可判定任意两点之间是否有边(或者弧)相连,并且容易求得各个顶点的度。对于无向图,顶点vi的度是邻接矩阵第i行(或列)的值不为0的元素数目(或元素的和);对于有向图第i行元素之和为顶点vi的出度OD(vi),第j列的元素之和为顶点vj的入度ID(vj)

       从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。
    从这个矩阵中,很容易知道图中的信息。
    (1)要判断任意两顶点是否有边无边就很容易了;
    (2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;
    (3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;
    而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。
    若图G是网图,有n个顶点,则邻接矩阵是一个n*n的方阵,定义为


        这里的wij表示(vi,vj)上的权值。无穷大表示一个计算机允许的、大于所有边上权值的值,也就是一个不可能的极限值。下面左图就是一个有向网图,右图就是它的邻接矩阵。


代码表示:

<span style="font-size:18px;">#include <stdio.h>
#include <stdlib.h>
#include <curses.h>
typedef char VertexType;                //顶点类型应由用户定义
typedef int EdgeType;                   //边上的权值类型应由用户定义
#define MAXVEX  100             //最大顶点数,应由用户定义
#define INFINITY    65535               //用65535来代表无穷大
#define DEBUG
 typedef struct
{
    VertexType vexs[MAXVEX];            //顶点表
    EdgeType   arc[MAXVEX][MAXVEX];         //邻接矩阵,可看作边
    int numVertexes, numEdges;      //图中当前的顶点数和边数
}Graph;
 //定位
int locates(Graph *g, char ch)
{
    int i = 0;
    for(i = 0; i < g->numVertexes; i++)
    {
        if(g->vexs[i] == ch)
        {
            break;
        }
    }
    if(i >= g->numVertexes)
    {
        return -1;
    }
     
    return i;
}
 //建立一个无向网图的邻接矩阵表示
void CreateGraph(Graph *g)
{
    int i, j, k, w;
    printf("输入顶点数和边数:\n");
    scanf("%d,%d", &(g->numVertexes), &(g->numEdges));
         #ifdef DEBUG
    printf("%d %d\n", g->numVertexes, g->numEdges);
    #endif
     for(i = 0; i < g->numVertexes; i++)
    {
        g->vexs[i] = getchar();
        while(g->vexs[i] == '\n')
        {
            g->vexs[i] = getchar();
        }
    }
        #ifdef DEBUG
    for(i = 0; i < g->numVertexes; i++)
    {
        printf("%c ", g->vexs[i]);
    }
    printf("\n");
    #endif
      for(i = 0; i < g->numEdges; i++)
    {
        for(j = 0; j < g->numEdges; j++)
        {
            g->arc[i][j] = INFINITY; //邻接矩阵初始化
        }
    }
    for(k = 0; k < g->numEdges; k++)
    {
        char p, q;
        printf("输入边(vi,vj)上的下标i,下标j和权值:\n");
        p = getchar();
        while(p == '\n')
        {
            p = getchar();
        }
        q = getchar();
        while(q == '\n')
        {
            q = getchar();
        }
        scanf("%d", &w);    
        int m = -1;
        int n = -1;
        m = locates(g, p);
        n = locates(g, q);
        if(n == -1 || m == -1)
        {
            fprintf(stderr, "there is no this vertex.\n");
            return;
        }
        //getchar();
        g->arc[m][n] = w;
        g->arc[n][m] = g->arc[m][n];  //因为是无向图,矩阵对称
    }
}
 
//打印图
void printGraph(Graph g)
{
    int i, j;
    for(i = 0; i < g.numVertexes; i++)
    {
        for(j = 0; j < g.numVertexes; j++)
        {
            printf("%d  ", g.arc[i][j]);
        }
        printf("\n");
    }
}
int main(int argc, char **argv)
{
    Graph g;
    //邻接矩阵创建图
    CreateGraph(&g);
    printGraph(g);
    return 0;
}
</span>
 

2.邻接链表表示法

邻接矩阵是不错的一种图存储结构,但是,对于边数相对顶点较少的图,这种结构存在对存储空间的极大浪费。因此,找到一种数组与链表相结合的存储方法称为邻接表。
    邻接表的处理方法是这样的:
    (1)图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过,数组可以较容易的读取顶点的信息,更加方便。
    (2)图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以,用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表。
    例如,下图就是一个无向图的邻接表的结构。


从图中可以看出,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息,firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指向边表中下一个结点的指针。

    对于带权值的网图,可以在边表结点定义中再增加一个weight的数据域,存储权值信息即可。如下图所示。

    



对于邻接表结构,图的建立代码如下。

/* 邻接表表示的图结构 */
#include <stdio.h>
#include<stdlib.h>
#define DEBUG
#define MAXVEX 1000         //最大顶点数
typedef char VertexType;        //顶点类型应由用户定义
typedef int EdgeType;           //边上的权值类型应由用户定义
typedef struct EdgeNode         //边表结点
{
    int adjvex;         //邻接点域,存储该顶点对应的下标
    EdgeType weigth;        //用于存储权值,对于非网图可以不需要
    struct EdgeNode *next;      //链域,指向下一个邻接点
}EdgeNode;
typedef struct VertexNode       //顶点表结构
{
    VertexType data;        //顶点域,存储顶点信息
    EdgeNode *firstedge;        //边表头指针
}VertexNode, AdjList[MAXVEX];
typedef struct
{
    AdjList adjList;
    int numVertexes, numEdges;  //图中当前顶点数和边数
}GraphList;
int Locate(GraphList *g, char ch)
{
    int i;
    for(i = 0; i < MAXVEX; i++)
    {
        if(ch == g->adjList[i].data)
        {
            break;
        }
    }
    if(i >= MAXVEX)
    {
        fprintf(stderr,"there is no vertex.\n");
        return -1;
    }
    return i;
}
//建立图的邻接表结构
void CreateGraph(GraphList *g)
{
    int i, j, k;
    EdgeNode *e;
    EdgeNode *f;
    printf("输入顶点数和边数:\n");
    scanf("%d,%d", &g->numVertexes, &g->numEdges);
    #ifdef DEBUG
    printf("%d,%d\n", g->numVertexes, g->numEdges);
    #endif
    for(i = 0; i < g->numVertexes; i++)
    {
        printf("请输入顶点%d:\n", i);
        g->adjList[i].data = getchar();          //输入顶点信息
        g->adjList[i].firstedge = NULL;          //将边表置为空表
        while(g->adjList[i].data == '\n')
        {
            g->adjList[i].data = getchar();
        }
    }
    //建立边表
    for(k = 0; k < g->numEdges; k++)
    {
        printf("输入边(vi,vj)上的顶点序号:\n");
        char p, q;
        p = getchar();
        while(p == '\n')
        {
            p = getchar();
        }
        q = getchar();
        while(q == '\n')
        {
            q = getchar();
        }
        int m, n;
        m = Locate(g, p);
        n = Locate(g, q);
        if(m == -1 || n == -1)
        {
            return;
        }
        #ifdef DEBUG
        printf("p = %c\n", p);
        printf("q = %c\n", q);
        printf("m = %d\n", m);
        printf("n = %d\n", n);
        #endif
     
        //向内存申请空间,生成边表结点
        e = (EdgeNode *)malloc(sizeof(EdgeNode));
        if(e == NULL)
        {
            fprintf(stderr, "malloc() error.\n");
            return;
        }
        //邻接序号为j
        e->adjvex = n;
        //将e指针指向当前顶点指向的结构
        e->next = g->adjList[m].firstedge;
        //将当前顶点的指针指向e
        g->adjList[m].firstedge = e;
         
        f = (EdgeNode *)malloc(sizeof(EdgeNode));
        if(f == NULL)
        {
            fprintf(stderr, "malloc() error.\n");
            return;
        }
        f->adjvex = m;
        f->next = g->adjList[n].firstedge;
        g->adjList[n].firstedge = f;
    }
}
 
 
void printGraph(GraphList *g)
{
    int i = 0;
    #ifdef DEBUG
    printf("printGraph() start.\n");
    #endif
     
    while(g->adjList[i].firstedge != NULL && i < MAXVEX)
    {
        printf("顶点:%c  ", g->adjList[i].data);
        EdgeNode *e = NULL;
        e = g->adjList[i].firstedge;
        while(e != NULL)
        {
            printf("%d  ", e->adjvex);
            e = e->next;
        }
        i++;
        printf("\n");
    }
}
 
int main(int argc, char **argv)
{
    GraphList g;
    CreateGraph(&g);
    printGraph(&g);
    return 0;
}

3.十字链表

    对于有向图来说,邻接表是有缺陷的。关心了出度问题,想了解入度就必须要遍历整个图才知道,反之,逆邻接表解决了入度却不了解出度 情况。下面介绍的这种有向图的存储方法:十字链表,就是把邻接表和逆邻接表结合起来的。重新定义顶点表结点结构,如下所示。

    
    其中firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点。
    重新定义边表结构,如下所示。
    
    其中,tailvex是指弧起点在顶点表的下表,headvex是指弧终点在顶点表的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。
    比如下图,顶点依然是存入一个一维数组,实线箭头指针的图示完全与邻接表相同。就以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以,v0边表结点hearvex = 3,而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所有headlink和taillink都是空的。

    
    重点需要解释虚线箭头的含义。它其实就是此图的逆邻接表的表示。对于v0来说,它有两个顶点v1和v2的入边。因此的firstin指向顶点v1的边表结点中headvex为0的结点,如上图圆圈1。接着由入边结点的headlink指向下一个入边顶点v2,如上图圆圈2。对于顶点v1,它有一个入边顶点v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,如上图圆圈3。
    十字链表的好处就是因为把邻接表和逆邻接表整合在一起,这样既容易找到以v为尾的弧,也容易找到以v为头的弧,因而比较容易求得顶点的出度和入度。
     而且除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图应用中,十字链表是非常好的数据结构模型。
    这里就介绍以上三种存储结构,除了第三种存储结构外,其他的两种存储结构比较简单。


(三)、图的遍历

    图的遍历和树的遍历类似,希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫图的遍历。
    对于图的遍历来说,如何避免因回路陷入死循环,就需要科学地设计遍历方案,通过有两种遍历次序方案:深度优先遍历和广度优先遍历。

深度优先:
    1.首先访问出发顶点V
    2.   依次从V出发搜索V的每个邻接点W;
    3.   若W未访问过,则从该点出发继续深度优先遍历;它类似于树的前序遍历。
    广度优先:
    1.首先访问出发顶点V
    2.然后访问与顶点V邻接的全部未访问顶点w、X、Y…
    3.然后再依次访问W、X、Y…邻接的未访问的顶点;

例如的深度优先遍历为:V1 V2 V3 V4 V5 V6;广度优先遍历为:V1 V2 V5 V3 V6 V4。

3.1 深度优先遍历

    深度优先遍历,也有称为深度优先搜索,简称DFS。其实,就像是一棵树的前序遍历
    它从图中某个结点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中的所有顶点都被访问到为止。
    我们用邻接矩阵的方式,则代码如下所示。

   

#define MAXVEX  100     //最大顶点数
typedef int Boolean;            //Boolean 是布尔类型,其值是TRUE 或FALSE
Boolean visited[MAXVEX];        //访问标志数组
#define TRUE 1
#define FALSE 0
//邻接矩阵的深度优先递归算法
void DFS(Graph g, int i)
{
    int j;
    visited[i] = TRUE;
    printf("%c ", g.vexs[i]);                           //打印顶点,也可以其他操作
    for(j = 0; j < g.numVertexes; j++)
    {
        if(g.arc[i][j] == 1 && !visited[j])
        {
            DFS(g, j);                  //对为访问的邻接顶点递归调用
        }
    }
}
 //邻接矩阵的深度遍历操作
void DFSTraverse(Graph g)
{
    int i;
    for(i = 0; i < g.numVertexes; i++)
    {
        visited[i] = FALSE;         //初始化所有顶点状态都是未访问过状态
    }
    for(i = 0; i < g.numVertexes; i++)
    {
        if(!visited[i])             //对未访问的顶点调用DFS,若是连通图,只会执行一次
        {
            DFS(g,i);
        }
    }
}

  如果使用的是邻接表存储结构,其DFSTraverse函数的代码几乎是相同的,只是在递归函数中因为将数组换成了链表而有不同,代码如下。

//邻接表的深度递归算法
void DFS(GraphList g, int i)
{
    EdgeNode *p;
    visited[i] = TRUE;
    printf("%c ", g->adjList[i].data);   //打印顶点,也可以其他操作
    p = g->adjList[i].firstedge;
    while(p)
    {
        if(!visited[p->adjvex])
        {
            DFS(g, p->adjvex);           //对访问的邻接顶点递归调用
        }
        p = p->next;
    }
}
 //邻接表的深度遍历操作
void DFSTraverse(GraphList g)
{
    int i;
    for(i = 0; i < g.numVertexes; i++)
    {
        visited[i] = FALSE;
    }
    for(i = 0; i < g.numVertexes; i++)
    {
        if(!visited[i])
        {
            DFS(g, i);
        }
    }
}
 例如的拓扑排序为:02143567或01243657或02143657或01243567


    对比两个不同的存储结构的深度优先遍历算法,对于n个顶点e条边的图来说,邻接矩阵由于是二维数组,要查找某个顶点的邻接点需要访问矩阵中的所有元素,因为需要O(n2)的时间。而邻接表做存储结构时,找邻接点所需的时间取决于顶点和边的数量,所以是O(n+e)。显然对于点多边少的稀疏图来说,邻接表结构使得算法在时间效率上大大提高。

3.2 广度优先遍历

    广度优先遍历,又称为广度优先搜索,简称BFS。图的广度优先遍历就类似于树的层序遍历了。

    邻接矩阵做存储结构时,广度优先搜索的代码如下。

//邻接矩阵的广度遍历算法
void BFSTraverse(Graph g)
{
    int i, j;
    Queue q;
    for(i = 0; i < g.numVertexes; i++)
    {
        visited[i] = FALSE;
    }
    InitQueue(&q);
    for(i = 0; i < g.numVertexes; i++)//对每个顶点做循环
    {
        if(!visited[i])               //若是未访问过
        {
            visited[i] = TRUE;
            printf("%c ", g.vexs[i]); //打印结点,也可以其他操作
            EnQueue(&q, i);           //将此结点入队列
            while(!QueueEmpty(q))     //将队中元素出队列,赋值给
            {
                int m;
                DeQueue(&q, &m);        
                for(j = 0; j < g.numVertexes; j++)
                {
                    //判断其他顶点若与当前顶点存在边且未访问过
                    if(g.arc[m][j] == 1 && !visited[j])
                    {
                        visited[j] = TRUE;
                        printf("%c ", g.vexs[j]);
                        EnQueue(&q, j);
                    } }  } }  }
对于邻接表的广度优先遍历,代码与邻接矩阵差异不大, 代码如下

//邻接表的广度遍历算法
void BFSTraverse(GraphList g)
{
    int i;
    EdgeNode *p;
    Queue q;
    for(i = 0; i < g.numVertexes; i++)
    {
        visited[i] = FALSE;
    }
    InitQueue(&q);
    for(i = 0; i < g.numVertexes; i++)
    {
        if(!visited[i])
        {
            visited[i] = TRUE;
            printf("%c ", g.adjList[i].data);   //打印顶点,也可以其他操作
            EnQueue(&q, i);
            while(!QueueEmpty(q))
            {
                int m;
                DeQueue(&q, &m);
                p = g.adjList[m].firstedge;     找到当前顶点边表链表头指针
                while(p)
                {
                    if(!visited[p->adjvex])
                    {
                        visited[p->adjvex] = TRUE;
                        printf("%c ", g.adjList[p->adjvex].data);
                        EnQueue(&q, p->adjvex);
                    }
                    p = p->next;
                }
            }
        }
    }
 对比图的深度优先遍历与广度优先遍历算法,会发现,它们在时间复杂度上是一样的,不同之处仅仅在于对顶点的访问顺序不同。可见两者在全图遍历上是没有优劣之分的,只是不同的情况选择不同的算法。

最小生成树

    包含图所有顶点的树,成为图的生成树,各边权值之和最小的树成为最小生成树。
    普里姆算法:
    1. 定义出发点为一个集合
    2. 其它点为另外一个集合
    3. 找到顶点和其它点的距离,不可到达为无穷大
    4. 每确定一个点,则把这个点当做出发点集合中的点,从此点开始再次循环规则

    克鲁斯卡尔算法:
    1. 先确定各个点之间的距离
    2. 画出各个点
    3. 距离从小到大排序,依次加入画的顶点中(但是避免形成回路,如果形成回路,则忽略此距离),直到各个点之间可以连通

   

拓扑排序

    用有向边表示各顶点活动开始的先后顺序,这些顶点组成的网络成为AOV网络。对一个有向无环图的顶点排成一个线性序列,使得有向边起点排在该有向边终点前的序列称之为拓扑序列。拓扑排序不一定唯一。
    1. 找到入度为0的点,作为起点
    2. 起点完成后,删除该起点的出度
    3. 在剩余的aov网络中重复此过程

关键路径

    AOV网络中,如果边上的权表示完成该活动所需的时间,则称这样的AOV为AOE网络。其中关键路径是最长的一条路径如下:

的关键路径为V1--V2--Vk或V1--V4--Vk。




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:600299次
    • 积分:10422
    • 等级:
    • 排名:第1706名
    • 原创:453篇
    • 转载:41篇
    • 译文:1篇
    • 评论:48条
    博客专栏
    最新评论