高斯平滑 高斯模糊 高斯滤波器 ( Gaussian Smoothing, Gaussian Blur, Gaussian Filter ) C++ 实现

本文介绍了高斯平滑的概念,它是带权平均滤波器的一种,通过高斯模板对图像进行平滑处理。文章展示了1D和2D高斯分布公式,并提供了一个5x5高斯滤波器的C++实现示例,用于从噪声图像中去除噪声,但无法消除椒盐噪声。

发展到现在这个平滑算法的时候, 我已经完全不知道如何去命名这篇文章了, 只好罗列出一些关键字来方便搜索了.

在之前我们提到过了均值滤波器, 就是说某像素的颜色, 由以其为中心的九宫格的像素平均值来决定. 在这个基础上又发展成了带权的平均滤波器, 这里的高斯平滑或者说滤波器就是这样一种带权的平均滤波器. 那么这些权重如何分布呢? 我们先来看几个经典的模板例子:

尝试了使用这些滤波器对我们原来的图进行操作, 得到了这样的一组结果:

原图:

raw

3x3 高斯:

3x3

5x5 高斯:

5x5

 

单纯从效果来看, 两个模板都起到了平滑的作用, 只是程度有深浅的区分. 那么从理论上来说为什么能起到平滑的作用呢? 很显然, 像素的颜色不仅由自身决定了, 同时有其周围的像素加权决定, 客观上减小了和周围像素的差异. 同时这些权重的设定满足了越近权重越大的规律. 从理论来讲, 这些权重的分布满足了著名的所谓高斯分布:

  这就是1维的计算公式

这就是2维的计算公式

x, y表示的就是当前点到对应点的距离, 而那些具体的模板就是由这里公式中的一些特例计算而来. 需要说明的是不只有这么一些特例, 从wikipedia可以方便地找到那些复杂的模板比如像:

Sample Gaussian matrix

This is a sample matrix, produced by sampling the Gaussian filter kernel (with σ = 0.84089642) at the midpoints of each pixel and then normalising. Note that the center element (at [4, 4]) has the largest value, decreasing symmetrically as distance from the center increases.

0.000000670.000022920.00019117 0.000387710.00019117 0.000022920.00000067
0.000022920.000786330.006559650.013303730.006559650.000786330.00002292
0.00019117 0.006559650.054721570.110981640.054721570.006559650.00019117
0.000387710.013303730.110981640.22508352 0.110981640.013303730.00038771
0.00019117 0.006559650.054721570.110981640.054721570.006559650.00019117
0.000022920.000786330.006559650.013303730.006559650.000786330.00002292
0.000000670.000022920.00019117 0.000387710.00019117 0.000022920.00000067

是不是看到就头大了:) 不过没关系, 对于一般的应用来说, 前面的例子已经可以完成任务了.  代码的话我们还是给一份5x5的example:

附带说一些,很明显,和均值滤波器类似, 这个滤波器没有消除校验噪声的作用.

 

 

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值