[Spark应用]-- 实现uv统计(使用内置函数)

本文展示了如何使用Spark SQL的内置函数countDistinct统计每日唯一用户(UV)。通过创建DataFrame,模拟用户访问日志数据,然后对数据进行分组并应用countDistinct函数,实现对用户ID的去重计数,最终输出每日的UV结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

废话不多说,具体实现代码如下
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.functions._
/**
 *
 *网站uv的统计
 *
 */

object DailyUV {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local").setAppName("DailyUV")
    val sc = new SparkContext(conf)

Spark 提供了一个命令行工具 `spark-submit`,用于提交 Spark 应用程序到集群运行。如果你想要编写一个简单的单词统计脚本来分析文本文件,可以按照以下步骤操作: 1. **创建 Spark 平台的应用**: 首先,你需要创建一个 Scala 或 Python 程序作为 Spark应用。例如,用 Scala 编写一个名为 `wordCount.py` 的简单 WordCount 示例: ```scala import org.apache.spark.sql.SparkSession object WordCount { def main(args: Array[String]): Unit = { val spark = SparkSession.builder.appName("Word Count") .getOrCreate() val textFile = spark.read.text("input.txt") // 替换为你的输入文件路径 val words = textFile.flatMap(_.split("\\W+")) // 分割并去除标点 val wordCounts = words.countByValue() // 统计每个单词出现次数 wordCounts.foreach(println) // 打印结果 spark.stop() } } ``` 2. **打包应用**: 将上述内容保存为 `.jar` 文件或者直接上传到 Hadoop 分布式文件系统 (HDFS) 或者支持的其他存储。 3. **提交到集群**: 在命令行中,使用 `spark-submit` 发布你的应用,提供相关的参数: ```sh spark-submit --master yarn-client --class com.example.WordCount --jars your-jar-file.jar input.txt output-dir ``` 这里: - `--master` 指定 Spark 集群模式,如 yarn-client、local等。 - `--class` 指定主应用程序的全限定名(在这里是 `com.example.WordCount`)。 - `--jars` 如果使用的是 jar 包,指定包含应用的 jar 地址。 - `input.txt` 是你要处理的文本文件。 - `output-dir` 是计算结果将被保存的地方,通常是 HDFS 的路径。 4. **运行和监控**: 命令执行后,你可以通过 Spark WebUI 查看作业状态和结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oo寻梦in记

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值