卷积神经网络与图像识别基本概念

此文同步到 : 卷积神经网络与图像识别基本概念

一 卷积神经网络的组成

图像分类可以认为是给定一副测试图片作为输入 IϵRW×H×C ,输出该图片
属于哪一类。参数 W 是图像的宽度,H 是高度,C 是通道的个数;彩色图像中 C = 3,灰度图像
中 C = 1。一般的会设定总共类别的个数,例如在ImageNet竞赛中总共有 1000 个类别;在CIFAR10 中有 10 个类别。卷积神经网络则可以看成这样的黑匣子。输入是原始图片 I,输出是 L 维的向量 vϵRL 。L表示预先设定的类别个数。向量 v 的每一个维度代表图像属于对应类别的可能性的大小。如果是
单类别识别问题,也就是说每一幅图像只分配 L 个标签中的一个标签,那么可以对 v 中的元素进行比较,选取最大的值对应的标签作为分类的结果。v 可以是一个概率分布的形式,即每一个元素 0vi1 ,并且 ivi=1 。其中 vi 表示 v 的第 i 个元素。也可以是从负无穷大到正无穷大的实数,越大代表属于对应类别的可能性越大。在卷积神经网络的内部,是由很多的层构成。每一个层可以认为是一个函数,输入是信号 x,输出是信号 y=f(x) 。输出的 y 又可以作为其他层的输入。以下从网络的前段,中端,末端的角度调研常用的层的定义。前端主要考虑对于图像的处理过程,中端是各种神经元,末端主要考虑与训练网络有关的损失函数。

二 网络的前段

前段指 的是对图像数据的处理,可以称之为数据层。

2.1 数据裁减

输入的图像的大小可能各不相同,有一些图像的分辨率较大,有一些比较小。而且长宽比也不一定会一样。对于这样的不一致性,理论上而言,可以不予处理,但是这要求网络中其他的层次支持这样的输入。目前大部分情况下采用的是通过裁剪的方法使得输出的图像是固定分辨率的。
在网络训练的阶段,裁剪的位置从原始的图像上随机选择,只需要满足裁剪
的子图完全落在图像中即可。通过随机的方式,是因为相当于增加了额外的数据,能够缓解过拟合的问题。

2.2 颜色干扰

裁剪之后的原图,每一个像素的是 0 到 255 的固定的数值。进一步的处理,包括减去均值,以及等比例缩放像素值使得像素值的分部基本在 [−1, 1] 之间。除了这些常规的操作之外,也会对图像进行归一化,相当于图像增强,比如 [9, 18, 17] 中对 CIFAR10 的数据预处理中。比如,对于每一个像素,随机选择 RGB 三个通道中的一个,然后在原像素值的基础上,随机添加一个从 [-20,20] 之间的数值。

三 网络的中段

以下介绍在卷及神经网络中常用的层的定义,即输入的数据 x 是什么维度,输出 y 是什么维度以及如何从输入得到输出。

3.1 卷积神经网络的基本组成

如下图:

CNN基本组成

3.2 卷积层

卷积层输入表示为 xϵRW×H×C ,是一个三维的数据。表示有C个矩阵,每个矩阵这里表示为 xcϵRW×H ,也称之为特征图。输出 yϵRW0×H0×C0 ,也是一个三维数据。特征图分辨率从 W×H 变为 W0×H0 ,特征图的个数也从C变为 C0
从输入到输出的一般公式为:

yc1=cXcWc,c1

矩阵 wc,c1ϵRw×h 称之为卷积核。属于卷积层的参数,一般通过随机梯度下降更新。 xc 为输入数据的第 c 个特征图,但在一些情况下,也会在图像的周围补白。符号 ∗ 表示二维数据的卷积运算。卷积定义为

(XcWc,c1)=m,nxcm,nwc,c1um,vn

符号 ()u,v 表示对应矩阵的 u 行 v 列的元素值。在有一些的网络结构中,并不是选择所有的 (u, v),而是每隔一定数量选择一个。
直观而言,卷积层相当于对图像进行滤波,希望能够抽象出来局部信息。局部信息通过较小的卷积核在图像不同的局部位置上扫描而得。
卷积层计算

下图是是一个动态示例,来源于 convolutional-networks

3.3 池化层

输入的信号表示为 xϵRW×H×C ,具有 C 个通道,每一个通道是一个特征图。输出 yϵRW0×H0×C 具有的通道个数与输入相同,但是特征图的分辨率一般是降低。

池化层是对每一个特征图单独进行操作并且输出一个对应的特征图。假设池化范围是 w×h ,那么输入的特征图提取出来 w×h 的小图,然后寻找子图的最大值,或者计算子图的均值,作为一个输出。签证一般称之为最大化池化,后者是均值池化。从图像中提出小图的方式可以是任意一个子图,也可以是每隔多个像素值得到一个子图。池化层的作用包括降低特征图的分辨率,从而减少计算量,以及增强网络的鲁棒性。比如对于最大化池化的方式,对于图像的平移具有一定的鲁棒性。

池化层的作用包括降低特征图的分辨率,从而减少计算量,以及增强网络的鲁棒性。比如对于最大化池化的方式,对于图像的平移具有一定的鲁棒性。

实例,对于如下特征图 4x4,使用最大池化效果如下:
最大池化
图中每个像素点的值是上面各个格子的数值,然后要对这张 4*4的图片进行池化;那么采用最大池化也就是对上面 4*4的图片分块,每块大小为2*2,然后统计每个块的最大值,作为下采样后图片的像素值。

3.4 CCCP

CCCP层的输入是 xϵRW×H×C ,输出是 yϵW×H×C 。特征层的分辨率保持不变,但是通道数有所改变。其定义为:

yc0u,v=cxcu,vwc,c0

等效于卷积核为 1x1的卷积层。
CCCP 层相当于在多个全连接层,每一个全连接将信号从 C 维度映射为 C0 维度。

3.5 ReLU 层及相关变体

该层的输入认识是一个信号 x。ReLU 并不要求输入信号的维度必须是一维或者几维的,因为该层的操作是对输出的每一个元素单独操作。但依然可以认为输入的 xϵRW×H×C 。输出是一个和输入维度一样的信号y。
假设从输入到输出的一个示例为:

yi={xi,0,if xi0 if xi<0 

显然这是一个非线性操作,ReLU 的存在使得网络的表达更加丰富。同时从定义中容易得出,该操作非常简单,并且在不同的输入点之间进行并行。ReLU 在一定程度上也是 S 行函数的近似。

yi=11+exi

进一步将ReLU改进为:
yi={xi,0.01xi,if xi0 if xi<0 

当元素值为负数的时候,通过 yi=0.01xi 的方式,避免了导数为 0,无法传播的情况。
进一步使用修正的ReLu为:
yi={xi,αxi,if xi0 if xi<0 

其中斜率 α 不再是一个固定的数值,而是通过梯度下降的方式就行优化

3.6 Dropout层

Dropout层的输入为 xϵRW×H×C 。这里并不要求输入是三维的信号,任意可能的维度都是可以。Dropout 同样是针对每一个数据进行操作。输出 y 与输入的大小一致。在网路进行训练的时候,对于输入的每一个数值 xi ,按照概率 p 设置为 0,否则保留。数学形式可以写为:

yi=ϵxi

其中 ϵ 是随机变量,并且满足 ϵ=0 的概率为 p, ϵ=1 的概率为 1 − p。实际中,概率 p 往往设置
为 1。

然而在进行测试的时候,计算公式更正为 yi=(1p)xi 相当于一个期望。

Dropout层的引入主要是为了减少过拟合的问题,减少不同参数的耦合性。

3.7 全连接层

输入时 xϵRD 。这里要求将输入认识是一个列向量。输出为 yϵRP 。从输入到输出的关系是:

y=Wx+b

其中 WϵRP×D,bϵRP ,是投影矩阵阵以及阈值,是该层的参数,通过随机梯度下降的方式更新优化。

全连接层是一个非常常用的层,然而该层在一定程度上会损失图像的空间信息,故而在有一些网络中,抛弃了全连接层。

3.8 局部响应归一化(LRN)

LRN层做的事是对当前层的输出结果做平滑处理。下图是示例:

LRN
前后几层(对应位置的点)对中间这一层做一下平滑约束。

输入时一个三维信号 xϵRW×H×C ,输出也是一个三维信号 yϵRW×H×C 局部响应一体化层(Local Response Normalization)通过如下公式计算:

ycu,v=xcu,v/(k+αj=max(0,in/2)C1,i+n/2(xcu,v)2)β

其中 xc,v 代表第 c 个通道上位置是(u,v)的信号值。示例参数设置为: k=2,n=5,α=104,β=0.75

3.9 批归一化层(Batch Normalization)

详细理解参考:Batch Normalization

批归一化层的输入依然是三维的信号 xϵRW×H×C ,输
出 y 与输入具有相同的大小。其归一化的基本思路是对输入的每一个元素按照如下方式归一化:

yi=αxi+b

使得输出的 yi 均值尽量的为 0,以及方差尽量为 1。通过这样的方式,每一层的数据分布基本上一致。该方法能够提升优化的速度。

其优点如下:

  • 可以选择比较大的初始学习率,此算法有快速训练收敛的特性。
  • 可以不用考虑过拟合中的 Dropout ,L2正则项选择问题,采用BN之后可以移除这两个参数,或者可以选择更小的L2正则约束参数了,因为BN具有提高网络泛化能力的特性。
  • 不再需要局部响应归一化层,因为BN本身就是一个归一化网络层。
  • 可以完全打乱训练数据,防止每批训练时某些样本经常被挑选到。

四 网络的末端

从网络训练的角度,末端主要是损失函数。也就是将数据映射为一个标量。通过随机梯度下降的方式,使得损失函数逐渐的降低。目前使用比较广泛的是 Softmax 回归和 Hinge 损失函数。

4.1 Softmax回归

较通俗易懂的理解Softmax回归的一篇博客是 Softmax回归

输入时 vϵRL ,表示输入图像在各个类别上的可能性;同时需要输入图像的标签 k。输出是损失值。首先将输入归一化到 [0, 1] 之间,通过 Softmax 函数:

Zi=exp{vi}jexp{vj}

然后通过交叉熵定义损失值,也就是:
y=log(Zk)

该损失函数主要应用与单类别分类问题中。


参考文章:

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(CNN)是一类包含卷积计算的前馈神经网络,专门用于图像处理等任务。CNN的设计基于图像任务中的平移不变性,也就是说图像中的对象在不同位置具有相同的含义。 CNN在图像处理领域得到了广泛应用,它能够有效处理高维的图像数据(如RGB矩阵表示),避免了传统的前馈网络需要大量输入神经元的问题。 使用CNN进行图像识别基本流程如下: 1. 数据准备:收集并标注大量的图像数据集,将其划分为训练集和测试集。 2. 网络构建:使用CNN的核心概念,如卷积层(Conv2D)、池化层(MaxPool2D)、展平层(Flatten)和全连接层(Dense),构建一个适合图像识别任务的网络结构。 3. 训练模型:使用训练集的图像数据作为输入,通过反向传播算法和优化器(如Adam)对网络进行训练,使其能够学习图像中的特征和模式。 4. 评估与调优:使用测试集的图像数据对训练好的模型进行评估,并根据评估结果进行调优,如调整网络参数、增加数据量等。 5. 应用模型:在实际应用中,使用训练好的模型对新的图像数据进行识别,实现图像分类、目标检测等任务。 综上所述,CNN(卷积神经网络)是一种用于图像识别神经网络模型,通过对图像进行卷积计算和特征提取,能够有效地进行图像分类和目标检测等任务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [基于CNN的图像识别(Tensorflow)](https://blog.csdn.net/first_bug/article/details/124938432)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [一文弄懂CNN及图像识别](https://blog.csdn.net/m0_61899108/article/details/122401122)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值