Face Alignment at 3000 FPS 阅读笔记

本文是《Face Alignment at 3000 FPS》的阅读笔记,介绍了通过shape-indexed feature和pixel difference feature提取特征,结合随机森林与全局线性回归器实现快速的人脸地标定位。训练过程中,每个landmark使用局部二值特征映射,随机森林用于特征提取,全局回归器进行位置预测,最终达到3000帧每秒的高速定位。
摘要由CSDN通过智能技术生成

《Face Alignment at 3000 FPS》 又是msra孙剑组一篇cvpr大作,之前实现了他之前的一篇《Face Alignment by Explicit Shape Regression 》(ESR), 当时速度应该是50fps左右,新算法已经到了3000fps。前一篇的思路是双层随机蕨做回归器 + shape indexed feature(计算复杂度相当低)。这一次用的思路是先学习每个landmark做feature mapping,然后再学习一个全局回归。

训练流程

framework
上图描述了整个framework。首先使用随机森林对每个landmark学习抽取local binary features(LBF)的方式 Φt={ ϕtl} 。其中 ϕtl 表示第 t 级第 l 个landmark对弈的随机森林。这个maping可以输出LBF特征。
再把LBF输入到一个全局的回归器进行回归,预测出landmark的真实位置。

featuresi=ϕt(Ii,St1i)(1)
ΔSiˆ=SiˆSi1(2)
E=||SiˆRt
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值