《Face Alignment at 3000 FPS》 又是msra孙剑组一篇cvpr大作,之前实现了他之前的一篇《Face Alignment by Explicit Shape Regression 》(ESR), 当时速度应该是50fps左右,新算法已经到了3000fps。前一篇的思路是双层随机蕨做回归器 + shape indexed feature(计算复杂度相当低)。这一次用的思路是先学习每个landmark做feature mapping,然后再学习一个全局回归。
训练流程
上图描述了整个framework。首先使用随机森林对每个landmark学习抽取local binary features(LBF)的方式 Φt={
ϕtl} 。其中 ϕtl 表示第 t 级第
再把LBF输入到一个全局的回归器进行回归,预测出landmark的真实位置。
featuresi=ϕt(Ii,St−1i)(1)
ΔSiˆ=Siˆ−Si−1(2)
E=∑||Siˆ−Rt