STL剖析笔记

序列式容器元素可序,但未必有序。vectorvector的数据结构与array相似,不同在于array是静态空间,一旦配置了内存空间就不能改变,如果要更换内存大小,需要配置一个新空间,然后将元素从旧地址一一搬到新地址,再把原来的旧空间释放。而vector是动态空间,新加入元素时,会自动扩充空间以容...

2018-02-26 16:17:53

阅读数 251

评论数 1

小米面试题看并查集

首先,我们从一道题来引出这个问题。假如已知有n个人和m对好友关系(存于数字r)。如果两个人是直接或间接的好友(好友的好友的好友…),则认为他们属于同一个朋友圈,请写程序求出这n个人里一共有多少个朋友圈。假如:n = 5,m = 3,r = {{1 , 2} , {2 , 3} , {4 , 5}}...

2018-02-09 10:26:33

阅读数 262

评论数 0

什么时候神经网络可以接受任意的输入?

首先要搞清楚这个事情的源头, 在迁移学习中,要进行模型迁移,一般都会把预训练模型的后面的全连接层去掉,然后用新的数据集训练,得到自己特色的模型。我们知道卷积其实是体征提取的过程,图像再进行卷积的时候,因为每一个卷积核中权值都是共享的,因此无论输入图像的尺寸是多大的都可以都是按照步长滑动做卷积,只...

2018-02-06 18:00:14

阅读数 361

评论数 2

tensorflow--tf.nn.softmax_cross_entropy_with_logits的用法

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logit...

2018-01-25 13:31:45

阅读数 192

评论数 0

讲清楚了反卷积

搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里。 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同。记号:   i...

2018-01-23 13:53:03

阅读数 2941

评论数 0

神经光流网络——用卷积网络实现光流预测(FlowNet: Learning Optical Flow with Convolutional Networks)

目录 目录文章说明光流原理神经光流网络结构介绍 1 收缩部分网络结构 flownetsimple结构flownetcorr结构 2 放大部分网络结构 训练数据集 1 flying chairs数据集 实验与结果分析Flownetsimple...

2018-01-02 10:04:14

阅读数 3020

评论数 2

目标检测的非最大值抑制-NMS

object detection[NMS][非极大抑制] 非极大抑制,是在对象检测中用的较为频繁的方法,当在一个对象区域,框出了很多框,那么如下图: 上图来自这里 目的就是为了在这些框中找到最适合的那个框,主要就是通过迭代的形式,不断的以最大得分的框去与其他框...

2017-09-14 11:33:23

阅读数 1437

评论数 0

BN(batch Normalization)笔记

l  BN(batch Normalization) What is BN 通常在神经网络训练开始前,都要对输入数据做一个归一化处理 Why BN? 1.     提升泛华能力 神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低; 2.    ...

2017-09-11 11:16:42

阅读数 1377

评论数 0

TensorFlow 中文资源精选,官方网站,安装教程,入门教程,实战项目,学习路径

Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解。安装教程,安装之后跑起来。入门教程,简单的模型学习和运行。实战项目,根据自己的需求进行开发。 很多内容下面这个英文项目: Inspired by htt...

2017-09-08 16:19:55

阅读数 474

评论数 0

NIPS 2106 优秀论文和代码下载地址集锦--持续更新

Using Fast Weights to Attend to the Recent Past (https://arxiv.org/abs/1610.06258) Repo: https://github.com/ajarai/fast-weights Learning to le...

2017-09-08 09:28:00

阅读数 622

评论数 0

tensorflow1.3 API学习笔记 1

tf.layers.conv2d  卷积层 https://www.tensorflow.org/versions/r1.3/api_docs/python/tf/layers/conv2d conv2d( inputs, filters, kernel_s...

2017-09-06 15:40:20

阅读数 494

评论数 0

撸一撸 ICML2016的CReLU

此方法来源于: ICML2016  Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. 这篇论文~~ 实验代码 :https://github.c...

2017-09-05 15:19:56

阅读数 992

评论数 1

好多好多的GAN生成模型哦

代码是python tensorflow的,代码下载在这里点击打开链接 主要有: 应用主要有字符识别,fashion~~~ 这里记录下,慢慢看

2017-09-05 11:38:23

阅读数 592

评论数 0

cs231n笔记--到底什么是梯度消散

笔记来自 CS231n Winter 2016: Lecture 4: Backpropagation, Neural Networks 内容 地址为:http://www.microsofttranslator.com/bv.aspx?ref=SERP&br=ro&mkt=zh...

2017-09-04 15:33:17

阅读数 846

评论数 0

几种使CNN稳-准-快的操作

我想让深度学习在实际产品中应用起来,可是模型太大,速度有些慢怎个搞~~~可喜的是有无数AI先锋奋勇战斗,为我们提出一些精彩绝伦的解决方案,下面总结下: 卷积核方面: 1.大卷积核用多个小卷积核代替 忆往昔,最早AlexNet中用到了一些非常大的卷积核,比如11×11、5×5卷积核,之前人们的...

2017-09-04 15:15:33

阅读数 556

评论数 0

NoScope:极速视频目标检测

一.提出背景        在基于CNN的方法提升到一个很高的准确度之后,效率又成为人们所关注的话题,目前兼备准确度和效率的方法包括 SSD、YOLO v2,其检测效率通常能到达 30-100FPS,而这里面的代价就是上万块的显卡,这个代价是相当高的。当下视频获取设备(CCTV摄像头)成本通...

2017-09-04 14:44:32

阅读数 416

评论数 0

CS231n课程笔记翻译:卷积神经网络笔记

译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译。本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改。 原文如下 内容列表: 结构概述 用来构建卷积神经网络的各种层 卷积层...

2017-08-31 18:07:31

阅读数 6987

评论数 0

深度学习实践课程--fast.ai 资料整理

今天要推荐一门深度学习的好课程,来自Fast.ai的Deep learning course! Welcome to fast.ai's 7 week course,Practical Deep Learning For Coders, Part 1, taught by Jeremy ...

2017-08-22 09:45:19

阅读数 3714

评论数 1

一次面试引发的问题:激活函数Relu,sigmoid ,tanh的角逐

记得之前去某东面试,面试官问我CNN的激活函数有哪些? 我说:Relu/sigmoid /tanh 问:有区别吗? 我心想我只用过relu,至于区别我想应该是高效吧。 问:为什? 我真没细想过,后来面试完啦赶紧去巴拉巴拉,整理啦以下资料,果然,做学问,不仅仅要知道how,更要知道why 整理笔记:...

2017-08-11 14:01:36

阅读数 1849

评论数 0

有用的函数--功能:求平方根倒数

来源于 著名游戏《雷神之锤III》,它的代码在2002年左右被披露,发现了一段用于快速计算平方根倒数的代码 float InvSqrt (float x) { float xhalf = 0.5f*x; int i = *(int*)&x; /...

2017-08-11 09:39:07

阅读数 310

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭