看HMM的是很看到了生成模型,于是提出了一个问题,什么是生成模型?查了一下资料,总算大致了解了,把内容贴在这里,以备翻阅。
判别模型(Discriminative Model),又可以称为条件模型,或条件概率模型。估计的是条件概率分布(conditional distribution),p(class|context)。利用正负例和分类标签,主要关心判别模型的边缘分布。其目标函数直接对应于分类准确率。
主要特点:寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。
优点:(1)分类边界更灵活,比使用纯概率方法或生产模型得到的更高级;(2)能清晰的分辨出多类或某一类与其他类之间的差异特征;(3)在聚类、视角变化、部分遮挡、尺度改变等方面效果较好;(4)适用于较多类别的识别;(5)判别模型的性能比生成模型要简单,比较容易学习。
缺点:(1)不能反映训练数据本身的特性,即能力有限,可以告诉你的是1还是2,但没有办法把整个场景描述出来;(2)缺少生成模型的优点,即先验结构的不确定性;(3)黑盒操作,即变量间的关系不清楚,不可视。
常见的主要有:logistic regression、SVMs、traditional neural networks、Nearest neighbor、Conditional random fields。
主要应用:Image and document classification、Biosequence analysis、Time series prediction。
生成模型(Generative Model)