OpenCV的video module中包含了几种较为常用的背景减除方法,其中混合高斯模型(Gaussian of Mixture Models, GMM)方法效果较好。
常用的目标检测方法:1)帧间差分;2)背景减除;
其中背景减除方法的关键在于建立一个鲁棒的背景模型(背景图像),常用的建立背景模型方法有:
1)均值法;2)中值法;3)滑动平均滤波法;4)单高斯;5)混合高斯模型;6)codebook,等。
混合高斯模型的原理:
每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画。这样的好处在于,同一个像素位置处可以呈现多个模态的像素值变化(例如水波纹,晃动的叶子等)。
GMM的出处:Adaptive background mixture models for real-time tracking (1999年由Chris Stau er提出)

这篇博客介绍了OpenCV的video module中混合高斯模型(GMM)用于运动目标检测的方法,它通过建立鲁棒的背景模型来区分前景和背景。GMM允许像素值有多个模态变化,适合处理复杂场景。文章提到了Adaptive background mixture models的相关研究,并给出了使用GMM进行背景减除并消除运动阴影的代码实现,展示了实验结果。
最低0.47元/天 解锁文章
7306

被折叠的 条评论
为什么被折叠?



