运动目标检测(GMM、Code Book、Vibe)

运动目标检测是视频分析的基础,主要包括静态差分、CodeBook、高斯背景建模(GMM)和ViBe方法。静态差分简单但易受场景变化影响;CodeBook通过码本适应动态背景;GMM利用混合高斯分布适应复杂背景;ViBe则采用随机背景更新策略。每种方法都有其优缺点和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        运动目标检测(前景背景分离)被认为是视频分析学习的入门基础,分为以像素为特征的方法和以纹理为特征的方法,以纹理为特征的方法主要参考上节所讲的LBP和SILTP,这里我们重点介绍像素方法,像素方法是最常用也是最直观的方法。

        像素方法假设的基础是背景建模,即建立背景像素的模型,符合该模型的像素判断为背景并且作为新的输入对背景进一步更新,不符合该模型的像素点判断为前景(即运动目标),主流的前景检测方法包括:静态差分、CodeBook方法、高斯背景建模、VIBE方法。


•   静态差分

        以视频首帧或者手动选取视频中不存在目标的场景帧作为参考帧,简单通过视频帧减去参考帧即得到运动的目标区域。这种方法优点在于很容易理解,缺点是无法表述场景的更新,当发生较大的变化时(比如光照、抖动、背景较大变化)结果会有很大误差。

        静态差分可以表述为:


        其中Pi,j为原始视频像素值,Refi,j为参考帧,Subi,j 为差分结果,t为差分阈值。


•   Code Book方法

        算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。

        如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值