数学基础IV——根据坐标系旋转建立欧拉微分方程解算姿态

本文介绍了无人机姿态变化的数学基础,涉及欧拉微分方程和坐标变换。通过绕Z轴的旋转矩阵推导,展示了如何在不同坐标系之间转换矢量投影,并解释了欧拉角的不同次序。讨论了小角度近似下的矩阵形式,以及利用哥式定理建立欧拉角微分方程进行姿态解算的方法。
摘要由CSDN通过智能技术生成

无人机的姿态变化可以理解为机体坐标系相对参考坐标系【即地球】的旋转。

假设有参考坐标系为O1,机体坐标系为O2,矢量r。初始时O1与O2重合,r在O1上的投影为[x1,y1,z1]T,可知在O2上的投影亦为[x1,y1,z1]T。

假设O1坐标系保持不动,O2绕Z轴相对O1旋转Ψ度,此时r在O1上的投影依然为[x1,y1,z1]T,设r在O2上的投影为[x2,y2,z2]T。

通过几乎运算可知x2=x1cosΨ+y1sinΨ,y2=-x1sinΨ+y1cosΨ,z2=z1;写成矩阵形式为[x2,y2,z2]T=[cosΨ,sinΨ,0;-sinΨ,cosΨ,0;0,0,1][x1,y1,z1]T。

计C[1->2]=[cosΨ,sinΨ,0;-sinΨ,cosΨ,0;0,0,1],表示绕Z轴旋转之后,矢量r在O1中的投影,到O2中的投影的转换。【该坐标转换在左乘O1投影之后得到O2投影】,可知C[1->2]的行列式必为1,因为矢量本身是相等的。

由此分别绕zyx【即航天欧拉角中的yaw-pitch-roll】分别旋转Ψθγ度之后的转换矩阵为:

同样的此行列式结果必为1,因为矢量本身是相等的,这个转换矩阵只是表示了同一个矢量在不同坐标系之间的投影。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值