摘要: 本文证明了在角速度向量不是常数时,四元数和旋转矩阵微分方程依然成立,成立的条件和性质等,并指出了大部分资料里给出四元数微分方程时没有提到的一个关于角速度向量在哪个坐标系下表示的重要细节,最后给出仿真验证。
四元数和旋转矩阵微分方程分别指下面两式
Q ˙ ( t ) = 1 2 Q ( t ) ∘ W ( t ) R ˙ ( t ) = w ⃗ ( t ) × R ( t ) \dot Q(t)=\frac 12Q(t)\circ W(t) \\ \dot R(t)=\vec w(t)\times R(t) Q˙(t)=21Q(t)∘W(t)R˙(t)=w(t)×R(t)
1. 四元数微分方程的证明
首先列出一些需要用到的四元数公式(基本知识见参考链接[1]),其中 ∘ \circ ∘ 表示四元数乘法。
Q 1 ∘ Q 2 = [ s 1 , v ⃗ 1 ] ∘ [ s 2 , v ⃗ 2 ] = [ s 1 s 2 − v ⃗ 1 ⋅ v ⃗ 2 , s 1 v ⃗ 2 + s 2 v ⃗ 1 + v ⃗ 1 × v ⃗ 2 ] Q = [ s , v ⃗ ] , Q − 1 = [ s , − v ⃗ ] , Q ∘ Q − 1 = [ 1 , 0 ] d Q d t ∘ Q − 1 + Q ∘ d ( Q − 1 ) d t = 0 Q_1\circ Q_2=[s_1,\vec v_1]\circ[s_2,\vec v_2] =[s_1s_2-\vec v_1\cdot\vec v_2,s_1\vec v_2+s_2\vec v_1+\vec v_1\times\vec v_2] \\ Q=[s,\vec v],\ Q^{-1}=[s,-\vec v],\ Q\circ Q^{-1}=[1,0] \\ \frac{\text dQ}{\text dt}\circ Q^{-1}+Q\circ \frac{\text d(Q^{-1})}{\text dt}=0 Q1∘Q2=[s1,v1]∘[s2,v2]=[s1s2−v1⋅v2,s1v2+s2v1+v1×v2]Q=[s,v], Q−1=[s,−v], Q∘Q−1=[1,0]dtdQ∘Q−1+Q∘dtd(Q−1)=0
四元数微分方程有两个等价形式,本文主要推导更常见的第一种形式
[ q ˙ 0 q ˙ 1 q ˙ 2 q ˙ 3 ] = 1 2 [ 0 − w x − w y − w z w x 0 − w z w y w y w z 0 − w x w z − w y w x 0 ] [ q 0 q 1 q 2 q 3 ] \begin{bmatrix} \dot q_0 \\ \dot q_1 \\ \dot q_2 \\ \dot q_3 \\ \end{bmatrix} =\frac{1}{2}\begin{bmatrix} 0 & -w_x & -w_y & -w_z \\ w_x & 0 & -w_z & w_y \\ w_y & w_z & 0 & -w_x \\ w_z & -w_y & w_x & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}
q˙0q˙1q˙2q˙3
=21
0wxwywz−wx0wz−wy−wy−wz0wx−wzwy−wx0
q0q1q2q3
当把角速度向量写成四元数形式(即 W = [ 0 , w ⃗ ] W=[0,\vec w] W=[0,w])时还可以写作
Q ˙ ( t ) = 1 2 W ( t ) ∘ Q ( t ) \dot Q(t)=\frac 12W(t)\circ Q(t) Q˙(t)=21W(t)∘Q(t)
或写成向量形式
[ s ˙ v ⃗ ˙ ] = 1 2 [ 0 − w ⃗ T w ⃗ w ⃗ × ] [ s v ⃗ ] \begin{bmatrix} \dot s \\ \dot{\vec v} \end{bmatrix} =\frac{1}{2}\begin{bmatrix} 0 & -\vec w^\text T \\ \vec w & \vec w^\times \end{bmatrix} \begin{bmatrix} s \\ \vec v \end{bmatrix} [s˙v˙]=21[0w−wTw×][sv]
特别注意,当角速度在世界系下表示时,这里的 w ⃗ × \vec w^\times w× 前面的符号为正,大部分资料里给出的都是角速度在本体系下的表示,此时符号为负,后面会详细解释。
1.1 四元数旋转公式
对任意单位四元数
Q = [ cos θ 2 , n ⃗ sin θ 2 ] Q=\left[\cos\frac\theta 2,\vec n\sin\frac\theta 2\right] Q=[cos2θ,nsin2θ]
和任意向量 v ⃗ ∈ R 3 \vec v\in\mathbb R^3 v∈R3,下面的公式(或算子)
L q ( v ⃗ ) = Q ∘ V ∘ Q − 1 L_q(\vec v)=Q\circ V\circ Q^{-1} Lq(v)=Q∘V∘Q
四元数与旋转矩阵微分方程证明及验证

本文证明了在角速度向量非常数时,四元数和旋转矩阵微分方程依然成立,指出了四元数微分方程中角速度向量坐标系表示的重要细节。详细推导了两种方程,探讨了角速度不变和变化的情况及符号问题,最后通过仿真验证了方程及三种旋转矩阵微分方程表示方法的等价性。
最低0.47元/天 解锁文章
6841

被折叠的 条评论
为什么被折叠?



