角速度变化时四元数和旋转矩阵微分方程的证明

四元数与旋转矩阵微分方程证明及验证
本文证明了在角速度向量非常数时,四元数和旋转矩阵微分方程依然成立,指出了四元数微分方程中角速度向量坐标系表示的重要细节。详细推导了两种方程,探讨了角速度不变和变化的情况及符号问题,最后通过仿真验证了方程及三种旋转矩阵微分方程表示方法的等价性。

摘要: 本文证明了在角速度向量不是常数时,四元数和旋转矩阵微分方程依然成立,成立的条件和性质等,并指出了大部分资料里给出四元数微分方程时没有提到的一个关于角速度向量在哪个坐标系下表示的重要细节,最后给出仿真验证。

四元数和旋转矩阵微分方程分别指下面两式
Q ˙ ( t ) = 1 2 Q ( t ) ∘ W ( t ) R ˙ ( t ) = w ⃗ ( t ) × R ( t ) \dot Q(t)=\frac 12Q(t)\circ W(t) \\ \dot R(t)=\vec w(t)\times R(t) Q˙(t)=21Q(t)W(t)R˙(t)=w (t)×R(t)

1. 四元数微分方程的证明

  首先列出一些需要用到的四元数公式(基本知识见参考链接[1]),其中 ∘ \circ 表示四元数乘法。
Q 1 ∘ Q 2 = [ s 1 , v ⃗ 1 ] ∘ [ s 2 , v ⃗ 2 ] = [ s 1 s 2 − v ⃗ 1 ⋅ v ⃗ 2 , s 1 v ⃗ 2 + s 2 v ⃗ 1 + v ⃗ 1 × v ⃗ 2 ] Q = [ s , v ⃗ ] ,   Q − 1 = [ s , − v ⃗ ] ,   Q ∘ Q − 1 = [ 1 , 0 ] d Q d t ∘ Q − 1 + Q ∘ d ( Q − 1 ) d t = 0 Q_1\circ Q_2=[s_1,\vec v_1]\circ[s_2,\vec v_2] =[s_1s_2-\vec v_1\cdot\vec v_2,s_1\vec v_2+s_2\vec v_1+\vec v_1\times\vec v_2] \\ Q=[s,\vec v],\ Q^{-1}=[s,-\vec v],\ Q\circ Q^{-1}=[1,0] \\ \frac{\text dQ}{\text dt}\circ Q^{-1}+Q\circ \frac{\text d(Q^{-1})}{\text dt}=0 Q1Q2=[s1,v 1][s2,v 2]=[s1s2v 1v 2,s1v 2+s2v 1+v 1×v 2]Q=[s,v ], Q1=[s,v ], QQ1=[1,0]dtdQQ1+Qdtd(Q1)=0
四元数微分方程有两个等价形式,本文主要推导更常见的第一种形式
[ q ˙ 0 q ˙ 1 q ˙ 2 q ˙ 3 ] = 1 2 [ 0 − w x − w y − w z w x 0 − w z w y w y w z 0 − w x w z − w y w x 0 ] [ q 0 q 1 q 2 q 3 ] \begin{bmatrix} \dot q_0 \\ \dot q_1 \\ \dot q_2 \\ \dot q_3 \\ \end{bmatrix} =\frac{1}{2}\begin{bmatrix} 0 & -w_x & -w_y & -w_z \\ w_x & 0 & -w_z & w_y \\ w_y & w_z & 0 & -w_x \\ w_z & -w_y & w_x & 0 \end{bmatrix} \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} q˙0q˙1q˙2q˙3 =21 0wxwywzwx0wzwywywz0wxwzwywx0 q0q1q2q3
当把角速度向量写成四元数形式(即 W = [ 0 , w ⃗ ] W=[0,\vec w] W=[0,w ])时还可以写作
Q ˙ ( t ) = 1 2 W ( t ) ∘ Q ( t ) \dot Q(t)=\frac 12W(t)\circ Q(t) Q˙(t)=21W(t)Q(t)
或写成向量形式
[ s ˙ v ⃗ ˙ ] = 1 2 [ 0 − w ⃗ T w ⃗ w ⃗ × ] [ s v ⃗ ] \begin{bmatrix} \dot s \\ \dot{\vec v} \end{bmatrix} =\frac{1}{2}\begin{bmatrix} 0 & -\vec w^\text T \\ \vec w & \vec w^\times \end{bmatrix} \begin{bmatrix} s \\ \vec v \end{bmatrix} [s˙v ˙]=21[0w w Tw ×][sv ]
特别注意,当角速度在世界系下表示时,这里的 w ⃗ × \vec w^\times w × 前面的符号为正,大部分资料里给出的都是角速度在本体系下的表示,此时符号为负,后面会详细解释。

1.1 四元数旋转公式

  对任意单位四元数
Q = [ cos ⁡ θ 2 , n ⃗ sin ⁡ θ 2 ] Q=\left[\cos\frac\theta 2,\vec n\sin\frac\theta 2\right] Q=[cos2θ,n sin2θ]
和任意向量 v ⃗ ∈ R 3 \vec v\in\mathbb R^3 v R3,下面的公式(或算子)
L q ( v ⃗ ) = Q ∘ V ∘ Q − 1 L_q(\vec v)=Q\circ V\circ Q^{-1} Lq(v )=QVQ

<think>好的,我现在需要回答用户关于在Matlab中计角速度矩阵旋转矩阵以及矩阵指数的方法或代码实现的问题。首先,我得确认用户的具体需求是什么。用户提到了角速度矩阵旋转矩阵矩阵指数,这三个概念在机器人学、姿态以及刚体运动学中都有应用。结合用户提供的引用资料,特别是引用[2][4],可能用户是在处理机械臂的运动学问题,或者MPU6050的姿态相关的内容。 首先,我需要明确每个术语的定义数学表示: 1. **角速度矩阵**:通常指的是角速度的叉乘矩阵,用于将角速度向量转换为旋转矩阵变化率。例如,三维空间中的角速度向量$\omega = [\omega_x, \omega_y, \omega_z]^T$对应的角速度矩阵$\Omega$为: $$ \Omega = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} $$ 这个矩阵旋转矩阵微分方程中出现,如$\dot{R} = \Omega R$。 2. **旋转矩阵**:属于SO(3)群,是三维空间中描述刚体旋转的正交矩阵,行列式为1。旋转矩阵可以通过多种方式表示,如欧拉角、轴角、四元数等转换而来。例如,绕Z轴旋转θ角的旋转矩阵为: $$ R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} $$ 3. **矩阵指数**:矩阵指数用于将李代数(如角速度矩阵)映射到李群(如旋转矩阵)。对于角速度矩阵$\Omega$对应的旋转矩阵$R$,存在关系$R = e^{\Omega t}$,其中t是间。矩阵指数可以通过泰勒级数展开或其他数值方法计。 接下来,我需要考虑在Matlab中如何实现这些计。Matlab内置了一些函数,比如expm用于计矩阵指数,rotx、roty、rotz可以生成绕各轴旋转的基本旋转矩阵。另外,用户可能需要将角速度向量转换为角速度矩阵,这需要自己编写函数或者使用符号计工具箱。 对于角速度矩阵的生成,用户可能需要一个函数,输入角速度向量,输出对应的叉乘矩阵。例如: ```matlab function Omega = angular_velocity_matrix(w) Omega = [0, -w(3), w(2); w(3), 0, -w(1); -w(2), w(1), 0]; end ``` 然后,旋转矩阵可以通过矩阵指数来计。例如,给定角速度向量旋转间,计对应的旋转矩阵: ```matlab w = [1; 0; 0]; % 绕x轴旋转角速度,单位rad/s t = pi/2; % 间,假设角速度持续t秒,总旋转角度为theta = ||w|| * t Omega = angular_velocity_matrix(w); R = expm(Omega * t); % 矩阵指数计旋转矩阵 ``` 此外,用户可能想了如何从欧拉角或其他表示法转换到旋转矩阵。例如,使用ZYX欧拉角: ```matlab theta_z = pi/4; % 绕Z轴旋转角度 theta_y = pi/6; % 绕Y轴旋转角度 theta_x = pi/3; % 绕X轴旋转角度 Rz = [cos(theta_z), -sin(theta_z), 0; sin(theta_z), cos(theta_z), 0; 0, 0, 1]; Ry = [cos(theta_y), 0, sin(theta_y); 0, 1, 0; -sin(theta_y), 0, cos(theta_y)]; Rx = [1, 0, 0; 0, cos(theta_x), -sin(theta_x); 0, sin(theta_x), cos(theta_x)]; R = Rz * Ry * Rx; % 组合旋转顺序,这里假设ZYX顺序 ``` 关于矩阵指数,Matlab的expm函数能够处理矩阵的指数计,包括反对称矩阵(如角速度矩阵)的指数,这对应于旋转矩阵。例如,当给定角速度向量旋转间,或者给定旋转旋转角度,可以利用矩阵指数得到对应的旋转矩阵。 需要注意的问题包括:角速度矩阵的生成是否正确,矩阵乘法的顺序是否符合旋转组合的约定(例如,固定轴还是活动轴),以及如何处理不同表示法之间的转换。此外,数值稳定性可能在使用矩阵指数需要考虑,尤其是当角速度很大或间很长。 用户提供的引用中提到了雅可比矩阵在机械臂逆运动学中的应用,以及旋转矩阵在姿态中的使用。这可能意味着用户的应用场景涉及机械臂控制或传感器数据处理,因此示例代码可能需要与这些应用相关。例如,计机械臂末端执行器的旋转矩阵,或者处理来自IMU的角速度数据以更新姿态。 最后,需要确保回答中的代码示例正确,并且符合Matlab的语法。同,要引用用户提供的参考资料,特别是在涉及雅可比矩阵旋转矩阵应用的部分。</think>### 在Matlab中计角速度矩阵旋转矩阵矩阵指数的方法 #### 1. 角速度矩阵的计 角速度矩阵$\Omega$用于描述刚体旋转的瞬角速度关系,其定义为: $$ \Omega = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix} $$ **Matlab实现**: ```matlab function Omega = get_angular_velocity_matrix(w) Omega = [0, -w(3), w(2); w(3), 0, -w(1); -w(2), w(1), 0]; end ``` 输入角速度向量$w = [\omega_x, \omega_y, \omega_z]^T$,输出对应的叉乘矩阵[^2]。 --- #### 2. 旋转矩阵的生成 旋转矩阵可通过欧拉角、轴角或矩阵指数生成。例如,绕Z轴旋转$\theta$角的矩阵为: $$ R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} $$ **Matlab内置函数**: ```matlab theta = pi/4; Rz = rotz(theta); % 绕Z轴旋转 Ry = roty(theta); % 绕Y轴旋转 Rx = rotx(theta); % 绕X轴旋转 ``` 组合旋转顺序(例如Z-Y-X欧拉角): ```matlab R = Rz * Ry * Rx; % 注意乘法顺序与旋转顺序相反 ``` --- #### 3. 矩阵指数的应用 矩阵指数可将角速度矩阵映射为旋转矩阵。若$\Omega$为角速度矩阵,则旋转矩阵$R$可表示为: $$ R = e^{\Omega t} $$ **Matlab实现**: ```matlab w = [1; 0; 0]; % 绕X轴的角速度(rad/s) t = pi/2; % 旋转间,总角度为θ = ||w|| * t = 1 * pi/2 Omega = get_angular_velocity_matrix(w); R = expm(Omega * t); % 计矩阵指数 disp(R); % 输出绕X轴旋转pi/2的矩阵 ``` --- #### 4. 综合示例:从角速度到姿态更新 假设通过陀螺仪测量得到角速度$w$,需更新旋转矩阵: ```matlab dt = 0.1; % 间步长 R_current = eye(3); % 初始姿态 w = [0.1; 0.2; 0.3]; % 当前角速度测量值 % 计旋转矩阵增量 Omega = get_angular_velocity_matrix(w); dR = expm(Omega * dt); R_new = R_current * dR; % 更新姿态 ``` --- #### 5. 与机械臂运动学的关联 在机械臂轨迹跟踪中,雅可比矩阵关联关节角速度与末端线速度/角速度[^4]。若已知雅可比矩阵$J$,可通过逆关节角速度: $$ \dot{q} = J^{-1} \begin{bmatrix}v \\ \omega \end{bmatrix} $$ 其中$\omega$即为末端角速度,可用于生成旋转矩阵更新[^1]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值