我写东西喜欢五颜六色,也喜欢通俗的来讲!哈哈。。。。
核心:
Fisher vector本质上是用似然函数的梯度vector来表达一幅图像
基础知识的预备:
1. 高斯分布
生活和自然中,很多的事和物的分布都可以近似的看做是高斯分布。比如说:一个班的成绩的优良中差的分布。最优秀的和最差的往往都是少数,一般人是大多数。
高斯分布直观的感受是这样的:这是这种分布的概率情况的表示:
2. 混合高斯分布
问题是:一个班的成绩的分布他也可能是这样的:60分以下以及95分以上很少人,60-75很多人,突然75-85人又少了,但是85-90又多了。这个时候直观的感受是这样的:
这个时候很显然若使用两个高斯分布来拟
Fisher Vector 图像表示学习

本文以通俗易懂的方式介绍了Fisher Vector的概念,它是利用高斯分布的梯度向量来表示图像的一种方法。首先讲解了高斯分布和混合高斯分布的基础知识,接着阐述了如何将高斯分布应用于图像特征表示,特别是独立同分布的重要性。然后深入讨论了流形学习,并揭示了Fisher Vector的本质——对高斯分布参数求偏导得到的未归一化向量,通过Fisher矩阵进行归一化。最后,作者指出Fisher Vector相比于单一高斯分布能更有效地表示图像,尤其是在目标检测等视觉任务中的优势。
最低0.47元/天 解锁文章
15

被折叠的 条评论
为什么被折叠?



