机器学习笔记:Fisher Vector基本原理与用法

本文深入探讨Fisher Vector的基本原理和计算步骤,它在图像识别特别是动作识别领域广泛应用。通过高斯混合模型逼近描述子分布,Fisher Vector提供了一种包含0阶、1阶和2阶统计信息的非稀疏图像特征表示,从而增强图像描述能力。
摘要由CSDN通过智能技术生成

    近期在看的动作识别相关的工作中fisher vector及其改进版本被广泛的应用,因此打算从Fisher Vector开始入手整理相关知识。


参考的博客内容:

http://blog.csdn.net/ikerpeng/article/details/41644197 从高斯分布开始介绍了FV,比较易于理解

http://blog.csdn.net/happyer88/article/details/46576379

http://blog.csdn.net/garfielder007/article/details/50767716

完整介绍Fisher Vector方法的论文

"ImageClassification with the Fisher Vector: Theory and Practice"


    Fisher Vector的详细概念可以见以上的几篇博文(或是直接看论文)。下面主要从FV的计算步骤的角度进行介绍。首先给出以上的论文中的算法步骤做参考:


 

 

 

   对于一副图像,提取T个描述子(比如SI

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值