《Mask R-CNN》 进行实例分割,就是要在每一个像素上都表示出来目标所属的具体类别。 完成类别检测,图像分割和特征点定位。
1、解决的问题:在时间上对faster rcnn进行了优化,并且提高准确度,最关键的是在像素级别进行特征点定位达到了将各个对象的边缘确定的效果。
上图是,faster rcnn的分割检测效果。下图是,mask rcnn的分割检测效果,可以明显看到,改进的地方是各个对象的边缘被勾勒了出来,这个技术是论文中提到的像素级别的特征点识别。
2、解决方法:
Mask RCNN在faster rcnn的结构上做出了改善。
大概了解了faster rcnn的网络结构,本论文也作出了简单介绍。Faster rcnn主要分为两个步骤,一是RPN,二是Fast RCNN。第一步骤主要是为了检测边缘,第二步骤是为了提取特征进行分类。faster rcnn使用NN来做区域类别的预测,在Fast-rcnn的基础上使用共享卷积层的方式。卷积后的特征图同样也是可以用来生成区域类别的预测(region proposal)。通过增加两个卷积层来实现Region Proposal Networks (RPNs) , 一个用来将每个特征图 的位置编码成一个向量,另一个则是对每一个位置输出一个 objectness score 和 regressed bounds for k region proposals.
Faster R-CNN 对