话说正确率、召回率和F值

转载 2015年11月21日 16:32:41
正确率、召回率和F值是在鱼龙混杂的环境中,选出目标的重要评价指标,本文就针对这三个指标得瑟得瑟。

        不妨看看这些指标的定义先:

正确率 = 正确识别的个体总数 /  识别出的个体总数

召回率 = 正确识别的个体总数 /  测试集中存在的个体总数

F值  = 正确率 * 召回率 * 2 / (正确率 + 召回率)

        不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。Seaeagle撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

        不妨看看如果Seaeagle把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) =82.35%

        由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。



举报

相关文章推荐

信息检索评价指标:正确率,召回率和F值

原文地址:http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/   下面简单列举几种常用的推荐系统评测指标: 1...

机器学习笔记十五:分类问题的性能度量(混淆矩阵,正确率,召回率,ROC,AUC)

分类问题的性能度量

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

应用libsvm对训练集进行训练并测试得出正确率和召回率

package org.lw.fenlei; import java.io.BufferedReader; import java.io.File; import java.io.FileInp...

【YOLO学习】召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))

摘要 在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall,IoU等等。为了怕以后忘了,现在把自己对这几种度量方式的理解记录一下。  这一文章首先假设一个测试集,然后...

【YOLO学习】召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))

在训练YOLO v2的过程中,系统会显示出一些评价训练效果的指标,包括Recall,IoU等等。为了怕以后忘了,现在把自己的理解记录一下。这一文章首先假设一个测试集,然后围绕这一测试集来介绍这几种指标...

谈谈召回率(R值),准确率(P值)及F值

一直总是听说过这几个词,但是很容易记混,在这里记录一下。希望对大家理解有帮助。 首先来做一个总结: 精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。 召回率是针对...

准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC、AUC

下面简单列举几种常用的推荐系统评测指标: 1、准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) (机器学习算法评测指标 )        下面简单列举几种常用的推荐系统评测指标: 1、...

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

下面简单列举几种常用的推荐系统评测指标: 1、准确率与召回率(Precision & Recall)准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相...

真假正负例、混淆矩阵、ROC曲线、召回率、准确率、F值、AP

一、假正例和假负例 假正例(False Positive):预测为1,实际为0的样本 假负例(False Negative):预测为0,实际为1的样本 实际预测中,那些真正例(True...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)