关闭

对称加密与公钥加密(下)

146人阅读 评论(0) 收藏 举报
分类:

在本篇博文中,我将讲解公钥密码以及公钥密码与对称称密码的比较

一.公钥密码

1、什么是公钥密码

公钥密码这种,密钥分为两种,加密密钥与解密密钥,发送用加密密钥对消息进行加密,接收者用解密密钥对密文进行解密。一般情况下,加密密钥是公开的,称为公钥,解密密钥是非公开的,称为私钥。公钥与私钥是一一对应的。

这样,阿狗可能拥有阿猫的公钥,但公钥并不是解密的密钥,故而阿狗无法完成解密操作

2.公钥密码存在的问题

公钥密码解决了密钥配送问题,但并不意味着它能解决所有的问题,因为我们要判断所得到的公钥是否正确合法,这个问题被称为公钥认证问题。这个问题这里我并不打算解决,若想知道答案,最好的方法是关注下面的博客

此外,公钥密码还有一个问题就是,它的处理速度只有对称密码的几百分之一,关于这个问题,,关注博客吧,下一篇博客会讲。

3.RSA

RSA是一种广泛使用的公钥密码,可以被用于公钥密码和数字签名

3.1.RSA加密
在RSA中,明文、密钥、密文,RSA可以用下面这个公式来加密


E和N是RSA的加密密钥,也就是说,E和N组合就是公钥,一般会写成“公钥是(E, N)或者“公钥{(E, N}”

3.2.RSA的解密

RSA的解密和加密一样简单,也是一个公式


D和N的组合是私钥,只有知道D和N两个数组合起来才能够完成解密运算


3.3生成密钥对
E和N是公钥,D和N是私钥,因此求E、D和N这三个数就是生成密钥。RSA密钥生成步骤如下
(1).求N
(2).求L
(3).求E
(4).求D

(1).求N
a.准备两个很大的质数p和q (用伪随机数生成器生成)
b.N = p x q (p和q为质数)

(2).求L
L=lcm(p-1, q-1) (L是p-1和q-1的最小公倍数)

(3).求E
gcd(E, L) = 1(1 < E < L)    E和L的最大公约数必须为1(E和L互质)
到目前为止我们已经求出E和N,也就是说我们已经生成密钥中的公钥

(4).求D
数D是由数E计算得到的。D、E和L必须具备以下关系
1 < D < L
E x D mod L = 1
到此为止我们也可以生成私钥啦。整个过程如下图



4.对RSA的攻击
咱们先来整理一下攻击者知道那些信息,不知道那些信息
【攻击者知道的信息】
密文:可以通过窃听来获取
数字E和N:公开的信息,因此破译者知道E和N
【密码破译者不知道的信息】
明文:需要破译的内容
数字D:私钥中至少D是不知道的东西
其他:p、q和L
破解方式一
暴力破解D:D的长度足够长的话,想找D的值难度很大,这种方法不现实。
破解方式二
通过E和N求出D:E x D mod L = 1; L = lcm(p-1, q-1),p和q无法知道,N=p x q,可以对N做质因数分解,但是如果N是大整数,现在还没有很好的算法,这种方法不现实;但如果质因数分解求q和p,恭喜你,你已经破解RSA啦
破解方式三
通过推测p和q:这还是有可能的,如果推测出来,也恭喜你,你已经破解RSA啦

5.中间人攻击
这种方法虽然不能破解RSA,但却是一种针对机密性的有效攻击,看下图你就明白


6.选择密文攻击
选择密文攻击一般是通过提示信息去尝试解密,使用RSA-OAEP,RSA-OAEP会在加密明文前生成一些认证信息,包括明文的散列值和一定数量的0,然后再对填充后的明文用RSA加密。这样攻击者就无法得到解密提示的相关信息

7.其他公钥密码
(1)ElGamal方式
(2)Rabin方式
(3)椭圆曲线密码


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:23637次
    • 积分:1043
    • 等级:
    • 排名:千里之外
    • 原创:79篇
    • 转载:2篇
    • 译文:2篇
    • 评论:3条
    最新评论