全排列的一些总结

          今天做了一道网易的笔试题——数列还原。里面用到了全排列的想法,因此学习并总结了一下全排列算法。

1、全排列问题描述

       输入一个字符串或者序列,打印出该字符串或序列中字符或元素的所有排列。例如输入字符串abc,则输出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba。

2、解决思路

        查了一些资料,很多都是利用递归的思想解决的。递归算法有以下几个特点:

  • 必须有可达到的终止条件,否则程序陷入死循环
  • 子问题在规模上比原问题小
  • 子问题可通过再次递归调用求解
  • 子问题的解应能组合成整个问题的解
       对于字符串全排列问题,如果能生成n-1个元素的全排列,就能生成n个元素的全排列。对于只有一个元素的集合,可以直接生成全排列。所以全排列的递归终止条件很明确:只有一个元素时。我们可以分析一下全排列的过程:
      (1)首先,我们固定第一个字符a,求后面两个字符bc的排列;
      (2)当两个字符bc排列求好之后,我们把第一个字符a和后面的b交换,得到bac,接着我们固定第一个字符b,求后面两个字符ac的排列;
      (3)现在是把c放在第一个位置的时候了,但是记住前面我们已经把原先的第一个字符a和后面的b做了交换,为了保证这次c仍是和原先处在第一个位置的a交换,我们在拿c和第一个字符交换之前,先要把b和a交换回来。在交换b和a之后,再拿c和处于第一位置的a进行交换,得到cba。我们再次固定第一个字符c,求后面两个字符b、a的排列;
      (4)既然我们已经知道怎么求三个字符的排列,那么固定第一个字符之后求后面两个字符的排列,就是典型的递归思路了。
可以根据下面这张图来理解递归的过程:

3、编程实现
程序1:字符串实现
#include<iostream>
#include<string>
#include<vector>

using namespace std;

void Permutation(string *s,int len)
{
	if(len == (*s).length())
		cout<<(*s)<<endl;
	else
	{
		for(int i = len;i<(*s).length();++i)
		{
			swap((*s)[len],(*s)[i]);
			Permutation(s,len+1);
			swap((*s)[len],(*s)[i]);
		}
	}
}

int main()
{
	string s;
	cin>>s;
	Permutation(&s,0);

	return 0;
}
程序2:字符数组实现
#include<iostream>  
using namespace std;  

void Permutation(char* pStr, char* pBegin)  
{  
    if(*pBegin == '\0')  
        printf("%s\n",pStr);  
    else  
    {  
        for(char* pCh = pBegin; *pCh != '\0'; pCh++)  
        {  
            swap(*pBegin,*pCh);  
            Permutation(pStr, pBegin+1);  
            swap(*pBegin,*pCh);  
        }  
    }  
}  
  
int main()  
{  
    char str[] = "abc";  
    Permutation(str,str);  
    return 0;  
} 
网易编程题程序:
#include<iostream>
#include<vector>
 
using namespace std;
 
bool find(vector<int> v,int n)    //查询v中是否存在整数n
{
    for(int i = 0;i<v.size();++i)
        if(v[i]==n)
            return true;
    return false;
}
 
vector<vector<int>> pv; //全局变量
 
void Perm(vector<int> &v,int st)   //对v中的数字进行全排列
{
    if(st == v.size())
        pv.push_back(v);
    else
    {
        for(int i = st;i<v.size();++i)
        {
            swap(v[i],v[st]);
            Perm(v,st+1);
            swap(v[i],v[st]);
        }
    }
}
 
void change(vector<int> &v,vector<int> subv,vector<int> vpos)//将v中的0用全排之后的数字分别代替
{
    for(int i = 0;i<vpos.size();++i)
        v[vpos[i]] = subv[i];
}
 
int cal(vector<int> v)  //计算顺序对的个数
{
    int cnt = 0;
    for(int i = 0;i<v.size()-1;++i)
        for(int j = i+1;j<v.size();++j)
            if(v[i]<v[j])
                ++cnt;
    return cnt;
}
 
int main()
{
    int n,k,tmp;
    while(cin>>n>>k)
    {
        vector<int> v,subv,vpos;
        for(int i = 0;i<n;++i)
        {
            cin>>tmp;
            v.push_back(tmp);
        }
        for(int i = 0;i<v.size();++i)
            if(v[i]==0)
                vpos.push_back(i);   //记录下vector<int>中0的位置
        for(int i = 1;i<=n;++i)
            if(!find(v,i))
                subv.push_back(i);
        Perm(subv,0);
        vector<int> vcnt;
        for(int i = 0;i<pv.size();++i)
        {
            change(v,pv[i],vpos);
            vcnt.push_back(cal(v));
        }
        int vcntk = 0;
        for(int i = 0;i<vcnt.size();++i)
            if(vcnt[i]==k)
                ++vcntk;
        cout<<vcntk<<endl;
    }
 
    return 0;
}

4、含重复元素的全排列
      上述思路解法有个缺陷:对于有重复元素的全排列,排列结果会有重复。这里直接给出全排列中去掉重复的规则:去重的全排列就是从第一个数字起,每个数分别与它后面非重复出现的数字交换。

上述第一段代码核心部分修正如下:
bool cmp(string s,int len,int i)
{
	for(int ii = len;ii<i;++ii)
		if(s[ii]==s[i])
			return true;
	return false;
}

void Permutation(string *s,int len)
{
	if(len == (*s).length())
		cout<<(*s)<<endl;
	else
	{
		for(int i = len;i<(*s).length();++i)
		{
			if(!cmp(*s,len,i))
			{
				swap((*s)[len],(*s)[i]);
				Permutation(s,len+1);
				swap((*s)[len],(*s)[i]);
			}
			
		}
	}
}


此外全排列问题还有非递归的实现以及利用STL中的next_permutation()函数,具体见参考资料第一篇博客。

参考资料:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值