图论 最短路径

    最短路径最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。 算法具体的形式包括:
  
  • 确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。
  • 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
  • 确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。
  • 全局最短路径问题 - 求图中所有的最短路径。适合使用Floyd-Warshall算法。

最短路径的属性: 若 最短路径中包含N个顶点,则 该最短路径中最多包含N-1条边,因为 如果 存在大于或等于N条边则 形成 回路,该边的权值若为正 则形成 正权回路,若为负 则形成 负权回路,路径长度将在回路中 无限增加 或减少;

 

求最短路径的算法:(不定期加入 已学习的算法)

         一:BellMan—Ford  算法

                  Bellman-ford算法是求含负权图的单源最短路径算法,效率很低,但代码很容易写。     

                  Bellman-Ford算法描述:

                 1,.初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

                 2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

                 3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

 描述性证明: 

  首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边

  其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。

  在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次

  每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)

  如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。

 在迭代求解最短路径阶段结束后,可以通过检验边集E的每条边(u,v)是否满足关系式 d[v]> d[u]+ w(u,v) 来判断是否存在负权回路

                 实例POJ 3259

二:Dijkstra算法

这个算法是通过为每个顶点 v 保留目前为止所找到的从s到v的最短路径来工作的。初始时,原点 s 的路径长度值被赋为 0 (d[s] = 0),同时把所有其他顶点的路径长度设为无穷大,即表示我们不知道任何通向这些顶点的路径(对于V 中所有顶点vsd[v] = ∞)。当算法结束时,d[v] 中储存的便是从sv 的最短路径,或者如果路径不存在的话是无穷大。Dijkstra 算法的基础操作是边的拓展:如果存在一条从uv 的边,那么从sv 的最短路径可以通过将边(u, v)添加到尾部来拓展一条从 s 到 u 的路径。这条路径的长度是 d[u] + w(u, v)。如果这个值比目前已知的d[v] 的值要小,我们可以用新值来替代当前d[v] 中的值。拓展边的操作一直执行到所有的 d[v] 都代表从 s 到 v 最短路径的花费。这个算法经过组织因而当d[u] 达到它最终的值的时候每条边(u,v)都只被拓展一次。

算法维护两个顶点集 S 和 Q。集合 S 保留了我们已知的所有 d[v] 的值已经是最短路径的值顶点,而集合 Q 则保留其他所有顶点。集合S初始状态为空,而后每一步都有一个顶点从 Q 移动到 S。这个被选择的顶点是 Q 中拥有最小的 d[u] 值的顶点。当一个顶点 u 从 Q 中转移到了 S 中,算法对每条外接边 (u, v) 进行拓展。

 实例 POJ1062

 

三:Floyd 算法

Floyd-Warshall算法的描述如下:

for k 1 to n do

for i 1 to n do

for j 1 to n do

if (Di,k +Dk,j < Di,j)then

 Di,j Di,k +Dk,j;

其中Di,j表示由点i到点j的代价,当Di,j为 ∞ 表示两点之间没有任何连接。

 

实例 POJ2253

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值