SIFT vs Dense-SIFT

原创 2014年10月16日 20:53:44

        有个博友问SIFT和Dense-SIFT在应用上的区别。这个问题可以放大到Sparse feature和Dense feature的使用场景上(不然现在说Dense-SIFT估计没人鸟了)。之前自己也考虑过这个问题,今天不妨写出来。这些都是对基本问题的一些理解,后面的博客打算写点高级点的东西吧,这样显得自己逼格会高一些。

        看过论文的人都会发现,图像识别问题大多用Dense-SIFT(当然现在也不用Dense-SIFT了,Deep Learning一统江湖再见。即使如此,CNN的输入也可以理解为一个Dense 特征----像素级的特征),而图像检索总是用SIFT(利用了检测子)。而参照[1]的实验结果,dense-SIFT在图像检索上的性能不如SIFT检测子的性能好。这个结论是合理的。这个原因可以从检索问题和识别问题本身进行讨论。

         Dense-SIFT在非深度学习的模型中,常常是特征提取的第一步[2]。采样的点提取SIFT描述子后,经过码书投影,投影在同一个码字上的采样点都代表了一组描述子相似的点。不同的码字(相当于直方图的每一个bin)之间,采样点的区分能力是不一样的。我们以图1为例,bin2代表的是一块很平坦的区域,于是dense采样时,很多点产生的描述子都会投影在bin2上。而bin1,bin3,bin4分别代表一块特有的区域,仅仅在dense采样到自行车,大提琴和眼睛等部位时,才能够形成类似的描述子。换而言之,bin2的重要性最低,而其他码字的重要性都很高。

          对于图像识别问题来说,由于有充足的训练样本(正负样本均充足)。通过对训练样本的学习,我们会学习一个分类器。以线性SVM为例,分类器的最终形式是:



         其中是输入图像的BOW向量, 是SVM需要学习的模型参数。在图1中,D=4。由于bin2的区分性较低(正样本和负样本在bin2上的值都会很相似),bin1,bin3,bin4的区分性较高(bin4一旦值大于0,就表示该测试样本极有可能是人脸,而bin1的值一旦大于0,就表示测试样本很有可能是自行车)。所以经过学习后SVM的参数可能是 。这个w和IDF的效果是一样的——使区分性小的码字权重变低。只不过IDF是人工设计的,而SVM中的w是经过学习得到的。综上所述,图像识别问题之所以采用密集采样,是因为密集采样后的点,会通过训练后的分类器进行了进一步的筛选。所以,无需人工干预特征点的选取。


图1


        而检索问题则不同了,大多数情况下我们并没有训练样本。因此,我们需要利用人的经验过滤区分性低的点(除此之外还引入了IDF进一步加权)。因此,大部分检索问题都利用了检测子,而不是密集采样。

       总而言之,当研究目标是对同样的物体或者场景寻找对应关系(correspondence)时,Sparse SIFT更好。而研究目标是图像表示或者场景理解时,Dense SIFT更好,因为即使密集采样的区域不能够被准确匹配,这块区域也包含了表达图像内容的信息。

       Sparse SIFT还有一个重要优点就是,输出的特征的结构是固定的(特征点数量稳定)。这对于spatial configuration的建模十分重要[3]。

        顺便废话一句,CNN的卷积层的输出,可以作为一个新的Dense Feature,用来代替人工设计的Dense Feature如HOG map啦。




参考文献:

[1]   C. G. M. Snoek, K. E. A. Van DeSande, D. Fontijne, A. Habibian, and M. Jain, “MediaMill at TRECVID 2013 :Searching Concepts , Objects , Instances and Events in Video 1 Task I : ConceptDetection,”2013.

[2]   S. Lazebnik, C. Schmid, and J.Ponce, “Beyond Bags of Features: Spatial Pyramid Matching for RecognizingNatural Scene Categories,” CVPR, 2006.

[3]   Tinne Tuytelaars, "Dense Interest Points", CVPR, 2010.


-------------

转载请注明出处:http://blog.csdn.net/jwh_bupt/article/details/40154933

http://jiangwh.weebly.com/

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

特征提取方法 SIFT,PCA-SIFT,GLOH,SURF

在前面的blog中,我们已经讲了SIFT的原理,这里我们再详细讲解SIFT的变体:PCA-SIFT和GLOH。 – Scale invariant feature transform (SI...

sift特征提取算法

SIFT算法是用来提取图像局部特征的算法,具有尺度不变性,并且对光线噪声等容忍度高。 主要步骤: 1、尺度空间的生成 2、检测尺度空间极值点; 3、精确定位极值点; 4、为每个关键点...

Dense Sift

Dense SIFT:不构建高斯尺度空间,只在a single scale上提取SIFT特征,可以得到每一个位置的SIFT descriptor SIFT:需要构建高斯尺度空间,只能得到Lowe算法计...

一个 Dense SIFT 算法的 matlab 实现

Ce Liu, Jenny Yuen, Antonio Torralba,JosefSivic, andWilliam T. Freeman 版权所有。       修改的部分函数与变量的名字,使其...

cnn为什么在提取特征时那么有效?

其实我是来提问题的,不是来解答问题的。

SIFT算法详解

尺度不变特征变换匹配算法详解 Scale Invariant Feature Transform(SIFT) Just For Fun zdd  zddmail@gmail.com 对于初学者,从...

Dense SIFT

参考网址:http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform

SIFT算法原理解析

首先找到图像中的一些“稳定点”,这些点是一些十分突出的点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的点,既然两幅图像中有相同的景物,那么使用某种方法分别提取各自的稳定点,这些...

卷积神经网络CNN究竟是怎样一步一步工作的?

转自:http://www.jianshu.com/p/fe428f0b32c1视频地址:https://www.youtube.com/embed/FmpDIaiMIeA文档参阅:pdf [2MB]...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)