通过K-MEDOIDS算法对时间序列进行聚类的实现

这篇博客介绍了在数据挖掘中应用K-MEDOIDS算法进行时间序列聚类的方法,重点讨论了由于时间序列计算复杂性而放弃K-MEANS的原因。提供了一份C++实现的DTW(动态时间规整)和K-MEDOIDS算法代码,适用于时间序列聚类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近做数据挖掘相关的工作,题目是时间序列聚类研究,目前对于这方面的研究都还只是在起步阶段,被广泛使用的还是基于K-MEDOIDS的聚类,放弃K-MEANS的主要原因还是时间序列之间序列的计算难度,对于这方面我们也已经有了一定的进展,不过也还是有很多的问题。

把基于DTW与K-MEDOIDS的时间序列聚类的算法贴出来,希望对大家有些帮助吧。

这份代码是我在以前的代码的基础上直接改的,所以C和C++有些混用。

### 基于Soft DTW距离度量的K-medoids聚类算法 以下是基于Python编写的实现代码,其中利用了`tslearn`库中的`soft_dtw`函数来计算时间序列之间的相似性,并通过自定义的距离矩阵完成K-medoids聚类。 #### 安装依赖 首先需要安装必要的库: ```bash pip install tslearn scikit-learn numpy scipy ``` #### 实现代码 以下是一个完整的实现: ```python import numpy as np from sklearn_extra.cluster import KMedoids from tslearn.metrics import soft_dtw from sklearn.metrics import silhouette_score def compute_distance_matrix(data, metric=soft_dtw): """ 计算数据集的时间序列距离矩阵。 参数: data (list or array): 时间序列数据集合。 metric (function): 距离度量方法,默认为soft_dtw。 返回: distance_matrix (array): 数据集中每对时间序列间的距离矩阵。 """ n = len(data) distance_matrix = np.zeros((n, n)) for i in range(n): for j in range(i, n): dist = metric(data[i], data[j]) distance_matrix[i][j] = dist distance_matrix[j][i] = dist # 对称矩阵 return distance_matrix def kmedoids_softdtw_clustering(data, num_clusters): """ 使用软动态时间规整(Soft-DTW)作为距离度量执行K-Medoids聚类。 参数: data (list or array): 输入的时间序列数据。 num_clusters (int): 预期的簇数量。 返回: labels (array): 每个样本所属的簇标签。 medoids (array): 各簇的中心点索引。 score (float): 轮廓系数得分。 """ # 计算距离矩阵 distance_matrix = compute_distance_matrix(data) # 执行K-Medoids聚类 model = KMedoids(n_clusters=num_clusters, metric="precomputed", method='pam', init='k-medoids++') labels = model.fit_predict(distance_matrix) # 获取轮廓系数评分 score = silhouette_score(distance_matrix, labels, metric="precomputed") return labels, model.medoid_indices_, score # 示例数据 if __name__ == "__main__": from tslearn.datasets import CachedDatasets # 加载示例时间序列数据 X_train, y_train, _, _ = CachedDatasets().load_dataset("Trace")[:2] time_series_data = X_train[y_train == 1][:30] # 取部分数据用于测试 # 设置参数并运行聚类 num_clusters = 4 labels, medoids, score = kmedoids_softdtw_clustering(time_series_data, num_clusters) print(f"Cluster Labels: {labels}") print(f"Medoid Indices: {medoids}") print(f"Silhouette Score: {score:.6f}") # 输出轮廓系数分数[^1] ``` #### 关键说明 上述代码实现了以下几个功能模块: 1. **距离矩阵计算**:通过嵌套循环调用`soft_dtw`函数构建两两时间序列间距离矩阵。 2. **K-medoids模型训练**:使用预处理好的距离矩阵输入到`sklearn-extra`库中的`KMedoids`模型中进行拟合。 3. **评估指标**:最终返回各簇分配情况以及整体轮廓系数评价结果。 此方案能够有效应对复杂形状变化较大的时间序列数据分类需求。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值