吴恩达Coursera课程 DeepLearning.ai 编程作业系列,本文为《卷积神经网络 》部分的第一周“卷积神经网络基础”的课程作业。
另外,本节课程笔记在此:《 吴恩达Coursera深度学习课程 DeepLearning.ai 提炼笔记(4-1)– 卷积神经网络基础》,如有任何建议和问题,欢迎留言。
Part 1:Convolutional Neural Networks: Step by Step
Welcome to Course 4’s first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.
Notation:
- Superscript [l] [ l ] denotes an object of the lth l t h layer.
- Example: a[4] a [ 4 ] is the 4th 4 t h layer activation. W[5] W [ 5 ] and b[5] b [ 5 ] are the 5th 5 t h layer parameters.
Superscript (i) ( i ) denotes an object from the ith i t h example.
- Example: x(i) x ( i ) is the ith i t h training example input.
Lowerscript i i denotes the entry of a vector.
- Example: a[l]i a i [ l ] denotes the ith i t h entry of the activations in layer l l , assuming this is a fully connected (FC) layer.
, nW n W and nC n C denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer l l , you can also write , n[l]W n W [ l ] , n[l]C n C [ l ] .
- nHprev n H p r e v , nWprev n W p r e v and nCprev n C p r e v denote respectively the height, width and number of channels of the previous layer. If referencing a specific layer l l , this could also be denoted

这是吴恩达Coursera深度学习课程的编程作业,重点介绍了卷积神经网络(CNN)的基本步骤和应用。作业涵盖了从零填充、卷积运算到池化层的前向传播,并在TensorFlow中实现了一个完整的CNN模型,用于图像分类任务。
最低0.47元/天 解锁文章
499

被折叠的 条评论
为什么被折叠?



