最优性原理及其证明

最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”这个最优性原理是动态规划的基础。

这个重要原理从概念上讲很好理解,意思是:如下图所示,如果给定从A到C的最优路线,那么最优路线上任意一点B到C的路线Ⅱ必须是B到C的最优路线。



即如果弧AB+弧BⅡC是A到C的最优路线,则最优性原理表明弧BⅡC一定是从B到C的最优路线。这一点可以用反证法证明。

证明: 如果存在另一路线弧BIC是从B到C的比弧BⅡC有更小代价的最优路线。那么沿弧AB+弧BIC就比弧AB+弧BⅡC有更小代价的最优路线。所以矛盾。这个矛盾说明,没有比从B到C沿弧BⅡC代价更小的路线,即最优路线(在此我们假设最优路线的特征就是代价最小)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值