最优性原理

最优性原理是指“多阶段决策过程中的最优决策序列具有如下性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”,最优性原理是动态规划的基础。

简而言之,最优性原理的含义就是:最优策略的任何一部分子策略都必须是最优的。

举个例子,如下图所示,如果给定从A到C的最优路线,那么A到最优路线上的任意一点B的路线I必须是A到B的最优路线,最优路线上的任意一点B到C的最先II必须是B到C的最优路线。

 

 

这个证明可以通过反证法来完成。

如果AB不是最优路线,那么一定存在另一条路线AB‘ < AB,此时AB'+BC < AB+BC,即此时AC不是最优的,前后矛盾。

同理也可以证明BC也是最优的。

转载于:https://www.cnblogs.com/nightingaleYch/articles/4955920.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值