MDS数据降维用于监督学习

转载 2016年06月01日 13:16:06

转载:http://blog.csdn.net/songrotek/article/details/42235097

来自于:http://sanwen8.cn/p/164Q2dR.html


个人感觉上面两个博客讲的还比较清楚,同时又MATLAB的样例,比较适合学习。

手动标定样本间距离,根据MDS计算出适合的X1--Xn的合适向量,你会发现这些向量之间差异化很大。

将得到的X向量用于监督学习的输出信号,进行拟合学习。

可用于判断物体相似性程度。

相关文章推荐

MDS(Multidimensional Scaling)

MDS的主要思想MDS的目的是降维。
  • totodum
  • totodum
  • 2016年04月08日 15:52
  • 1230

[机器学习入门] 李宏毅机器学习笔记-14 (Unsupervised Learning: Linear Dimension Reduction;无监督学习:线性降维)

[机器学习入门] 李宏毅机器学习笔记-14 (Unsupervised Learning: Linear Dimension Reduction;线性降维) PDF VIDEOUnsupe...

数据集-可用于二分类监督学习

  • 2014年12月12日 20:44
  • 52KB
  • 下载

【平价数据】GAN用于半监督学习

介绍Improved techniques for training gans中使用GAN进行半监督分类的方法

kpca lda mds降维 人脸数据

  • 2017年03月24日 16:04
  • 372KB
  • 下载

关于监督学习(web数据挖掘)

今天讲的是朴素贝叶斯分类,我有几点体会,做一记录。 (1)朴素贝叶斯分类总是有关于独立性的假设。将朴素贝叶斯用于文本分类时,该学习方法基于一个概率生成模型进行推导。 所有数据文档由混合模型(混合分...

数据挖掘之监督学习篇

本文的笔记来源于> Bing Liu著

数据挖掘之无监督学习篇

本文主要是在看>  Bing Liu著 的这本书的笔记 1. 基本概念 监督学习(Supervised Learning):通过发现数据attributes和类别attributes之间的关联模式...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MDS数据降维用于监督学习
举报原因:
原因补充:

(最多只允许输入30个字)