叉积

原创 2015年11月19日 14:54:50

多维度的叉积涉及到的知识似乎没学过,而且似乎也暂时没有用,所以可以先只管二维与三维的情形。以下是知乎的相关问题的链接,下面有一些人的回答:

N维向量的叉积是如何被定义的


维基百科:向量积

两个向量\vec{a}\vec{b}的叉积写作\vec{a}×\vec{b}(有时也被写成\vec{a}\vec{b},避免和字母x混淆)。叉积可以定义为:

\vec{a} \times \vec{b} = \left |a  \right | \left |b  \right | \sin \theta \ \vec{n}

在这里θ表示\vec{a}\vec{b}之间的角度(0°≤θ≤180°),它位于这两个矢量所定义的平面上。而\vec{n}是一个与\vec{a}\vec{b}所构成的平面垂直单位矢量

这个定义有个问题,就是同时有两个单位向量都垂直于\vec{a}\vec{b}:若\vec{n}满足垂直的条件,那么-\vec{n}也满足。

“正确”的向量由向量空间的方向确定,即按照给定直角坐标系(\vec{i}\vec{j}\vec{k})的左右手定则。若 (\vec{i}\vec{j}\vec{k})满足右手定则,则 (\vec{a}\vec{b}\vec{a}×\vec{b})也满足右手定则;或者两者同时满足左手定则

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,\vec{c} = \vec{a}\times\vec{b}当右手的四指从\vec{a}以不超过180度的转角转向\vec{b}时,竖起的大拇指指向是\vec{c}的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量


几何意义[编辑]

叉积的(长度) \left |\vec{a} \times \vec{b}  \right | 可以解释成以\vec{a}\vec{b}为边的平行四边形面积。进一步就是说,混合积可以得到以\vec{a}\vec{b}\vec{c}为边的平行六面体体积

代数性质[编辑]

\vec{a}\times\vec{b}= - \vec{b}\times\vec{a}
\vec{a} × (\vec{b} + \vec{c}) = \vec{a} × \vec{b} + \vec{a} × \vec{c}
  • 与标量乘法兼容:
(r\vec{a}) × \vec{b} = \vec{a} × (r\vec{b}) = r(\vec{a} × \vec{b})
\vec{a} × (\vec{b} × \vec{c}) + \vec{b} × (\vec{c} × \vec{a}) + \vec{c} × (\vec{a} × \vec{b}) = 0

分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数



拉格朗日公式[编辑]

  • 这是一个著名的公式,而且非常有用:
\vec{a} × (\vec{b} × \vec{c}) = \vec{b}\vec{a}·\vec{c})- \vec{c}\vec{a}·\vec{b}),

  • 另一个有用的拉格朗日恒等式是:
|a \times b|^2 + |a \cdot b|^2 = |a|^2 |b|^2

这是一个在四元数代数中范数乘法|vw| = |v| |w|的特殊情形


矩阵形式[编辑]

给定直角坐标系的单位向量\vec{i}\vec{j}\vec{k}满足下列等式:

\vec{i}\times\vec{j} =\vec{k}\vec{j} \times \vec{k} = \vec{i}\vec{k} \times \vec{i} = \vec{j}

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}
\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}

\begin{align}\vec{a} \times \vec{b}  & = (a_2b_3 - a_3b_2)\vec{i}+(a_3b_1 - a_1b_3)\vec{j}+(a_1b_2 - a_2b_1)\vec{k}\\  &=  \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\\end{vmatrix}\end{align}

叉积也可以用四元数来表示。注意到上述\vec{i}\vec{j}\vec{k}之间的叉积满足四元数的乘法。一般而言,若将向量[a1a2a3]表示成四元数a1i + a2j + a3k,两个向量的叉积可以这样计算:计算两个四元数的乘积得到一个四元数,并将这个四元数的实部去掉,即为结果。更多关于四元数乘法,向量运算及其几何意义请参见四元数与空间旋转



计算公式的话:


三维:\begin{align}\vec{a} \times \vec{b}  & = (a_2b_3 - a_3b_2)\vec{i}+(a_3b_1 - a_1b_3)\vec{j}+(a_1b_2 - a_2b_1)\vec{k}\\  &=  \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\\end{vmatrix}\end{align}


二维:   二维的情形其实可以看作是三维的z=0的情形。所以公式就是上面的第三个部分 k的系数‘’

 V1(x1, y1) X V2(x2, y2) = x1y2 – y1x2


点乘可以判断夹角的大小,锐直钝

利用叉乘可以计算平行四边形面积、三角形面积,从而计算多边形面积。还能根据正负计算左右位置关系。

这个网页里的可以帮助理解叉积:

高维空间的叉积及其几何意义

版权声明:本文为博主原创文章,未经博主允许不得转载。

向量的几何解释笔记(点积叉积矩阵)

在说这些概念以前一定要知道一件事情 : 所有的数学定义都是由物理意义抽象而来,活着是为了某种计算方便而认为的定义的一种数学符号和数学运算规则: 1、行列式(获取两个向量张成的面积) 假设我有连个向量a...
  • taiyangshenniao
  • taiyangshenniao
  • 2016年12月01日 20:31
  • 1088

计算几何基础——【点积和叉积的用处】

计算几何是算法竞赛的一大块,而叉积是计算机和的
  • y990041769
  • y990041769
  • 2014年07月29日 16:40
  • 27888

叉积与点积的运用

叉积与点积的运用  标签: 算法cvector图形编程工作 2012-08-07 09:30 1322人阅读 评论(1) 收藏 举报  分类: 数据结构(2)  目录(?)[+] ...
  • u012419410
  • u012419410
  • 2016年12月11日 23:06
  • 809

叉积在ACM中的应用

定义若OA→=(x1,y1)  OB→=(x2,y2)\vec{OA}=(x_1,y_1)~~\vec{OB}=(x_2,y_2) 定义叉积:OA→×OB→=x1y2−x2y1\vec{OA}\ti...
  • Danliwoo
  • Danliwoo
  • 2015年11月14日 17:04
  • 1672

叉积求距离(简单几何)

description 实验室胡某是LOL一区最强王者,其上分神器就是ADCarry中的皮城女警。话说这女警不但长的好看,手还是全联盟最长的。 女警的R技能完美一击呢,其实就是点爆对方的头...
  • martinue
  • martinue
  • 2015年02月28日 18:54
  • 721

向量的点积与叉积回顾

向量是3D图形处理、图像处理的基础;在这里,我们回顾一下基本的支持: 向量的数量积和向量积:...
  • gggg_ggg
  • gggg_ggg
  • 2015年04月25日 10:52
  • 1082

计算几何基础——矢量和叉积

计算几何基础——矢量和叉积 分类: 算法与数据结构2009-10-09 08:19 2259人阅读[+] 矢量       如果一条线段的端点是有次序之分的话,那么这种线...
  • my_acm
  • my_acm
  • 2014年05月16日 23:29
  • 1636

向量的叉积性质 用途

向量的叉积性质都忘完了…… 但是它可以用来判断点在直线的某侧。进而可以解决点是否在三角形内,两个矩形是否重叠等问题。 向量的叉积的模表示这两个向量围成的平行四边形的面积。       设矢量P...
  • u012419410
  • u012419410
  • 2014年12月12日 21:35
  • 1080

POJ1106->叉积判断点在直线的左右

POJ1106->叉积判断点在直线的左右题意: 给定平面上一些点的坐标,有一个半径固定,圆心固定且可以旋转的半圆形平面,求这个平面能覆盖到的最大点的数量。 题解: 由于圆心半径一定,所以有效的...
  • SelinaFelton
  • SelinaFelton
  • 2016年08月27日 23:33
  • 314

点积与向量积(点乘与叉乘)

参考文档:《计算机图形学》   设向量: V1(x1, y1, z1)     V2(x2,y2,z2)   向量长度:(标量) |V1| = 根号(x1*x1 + y1*y1 + z1*z1) |V...
  • chunyexiyu
  • chunyexiyu
  • 2015年03月04日 11:22
  • 3682
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:叉积
举报原因:
原因补充:

(最多只允许输入30个字)