关闭

叉积

标签: 叉积
369人阅读 评论(0) 收藏 举报
分类:

多维度的叉积涉及到的知识似乎没学过,而且似乎也暂时没有用,所以可以先只管二维与三维的情形。以下是知乎的相关问题的链接,下面有一些人的回答:

N维向量的叉积是如何被定义的


维基百科:向量积

两个向量\vec{a}\vec{b}的叉积写作\vec{a}×\vec{b}(有时也被写成\vec{a}\vec{b},避免和字母x混淆)。叉积可以定义为:

\vec{a} \times \vec{b} = \left |a  \right | \left |b  \right | \sin \theta \ \vec{n}

在这里θ表示\vec{a}\vec{b}之间的角度(0°≤θ≤180°),它位于这两个矢量所定义的平面上。而\vec{n}是一个与\vec{a}\vec{b}所构成的平面垂直单位矢量

这个定义有个问题,就是同时有两个单位向量都垂直于\vec{a}\vec{b}:若\vec{n}满足垂直的条件,那么-\vec{n}也满足。

“正确”的向量由向量空间的方向确定,即按照给定直角坐标系(\vec{i}\vec{j}\vec{k})的左右手定则。若 (\vec{i}\vec{j}\vec{k})满足右手定则,则 (\vec{a}\vec{b}\vec{a}×\vec{b})也满足右手定则;或者两者同时满足左手定则

一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,\vec{c} = \vec{a}\times\vec{b}当右手的四指从\vec{a}以不超过180度的转角转向\vec{b}时,竖起的大拇指指向是\vec{c}的方向。由于向量的叉积由坐标系确定,所以其结果被称为伪向量


几何意义[编辑]

叉积的(长度) \left |\vec{a} \times \vec{b}  \right | 可以解释成以\vec{a}\vec{b}为边的平行四边形面积。进一步就是说,混合积可以得到以\vec{a}\vec{b}\vec{c}为边的平行六面体体积

代数性质[编辑]

\vec{a}\times\vec{b}= - \vec{b}\times\vec{a}
\vec{a} × (\vec{b} + \vec{c}) = \vec{a} × \vec{b} + \vec{a} × \vec{c}
  • 与标量乘法兼容:
(r\vec{a}) × \vec{b} = \vec{a} × (r\vec{b}) = r(\vec{a} × \vec{b})
\vec{a} × (\vec{b} × \vec{c}) + \vec{b} × (\vec{c} × \vec{a}) + \vec{c} × (\vec{a} × \vec{b}) = 0

分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数



拉格朗日公式[编辑]

  • 这是一个著名的公式,而且非常有用:
\vec{a} × (\vec{b} × \vec{c}) = \vec{b}\vec{a}·\vec{c})- \vec{c}\vec{a}·\vec{b}),

  • 另一个有用的拉格朗日恒等式是:
 |a \times b|^2 + |a \cdot b|^2 = |a|^2 |b|^2

这是一个在四元数代数中范数乘法|vw| = |v| |w|的特殊情形


矩阵形式[编辑]

给定直角坐标系的单位向量\vec{i}\vec{j}\vec{k}满足下列等式:

\vec{i}\times\vec{j} =\vec{k}\vec{j} \times \vec{k} = \vec{i}\vec{k} \times \vec{i} = \vec{j}

通过这些规则,两个向量的叉积的坐标可以方便地计算出来,不需要考虑任何角度:设

\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}
\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}

\begin{align}\vec{a} \times \vec{b}  & = (a_2b_3 - a_3b_2)\vec{i}+(a_3b_1 - a_1b_3)\vec{j}+(a_1b_2 - a_2b_1)\vec{k}\\  &=  \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\\end{vmatrix}\end{align}

叉积也可以用四元数来表示。注意到上述\vec{i}\vec{j}\vec{k}之间的叉积满足四元数的乘法。一般而言,若将向量[a1a2a3]表示成四元数a1i + a2j + a3k,两个向量的叉积可以这样计算:计算两个四元数的乘积得到一个四元数,并将这个四元数的实部去掉,即为结果。更多关于四元数乘法,向量运算及其几何意义请参见四元数与空间旋转



计算公式的话:


三维:\begin{align}\vec{a} \times \vec{b}  & = (a_2b_3 - a_3b_2)\vec{i}+(a_3b_1 - a_1b_3)\vec{j}+(a_1b_2 - a_2b_1)\vec{k}\\  &=  \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\a_1 & a_2 & a_3 \\b_1 & b_2 & b_3 \\\end{vmatrix}\end{align}


二维:   二维的情形其实可以看作是三维的z=0的情形。所以公式就是上面的第三个部分 k的系数‘’

 V1(x1, y1) X V2(x2, y2) = x1y2 – y1x2


点乘可以判断夹角的大小,锐直钝

利用叉乘可以计算平行四边形面积、三角形面积,从而计算多边形面积。还能根据正负计算左右位置关系。

这个网页里的可以帮助理解叉积:

高维空间的叉积及其几何意义

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:47414次
    • 积分:1673
    • 等级:
    • 排名:千里之外
    • 原创:118篇
    • 转载:54篇
    • 译文:0篇
    • 评论:1条
    最新评论