一、普通线性回归(OLS)
损失函数:
J(w)=1n∑i=1n(yi−w∗xi)2=1n||Y−X∗w||2
其中: Y 、
需要用到的矩阵求导公式为:
dBAdA=BT
dATBdA=B
dATBAdA=2BA
所以, J(w) 对 w 求导得到:
当 XTX 为可逆矩阵的时候,有解:
w=(XTX)−1XTY
因为:
Xw=X(XTX)−1XTY=Y^=H^Y
所以,帽子矩阵为:
H^=X(XTX)−1XT
二、加权回归
损失函数:
J(w)=1n∑i=1nαi(yi−w∗xi)2=1nα||Y−X∗w||2
同理推导:
J(w)=1nα||Y−X∗w||2=1n(Y−Xw)Tα(Y−Xw)=1n(YT−wTXT)α(Y−Xw)=1n(YTαY−wTXTαY−YTαXw+wTXTαXw)
其中, α 为是权重的对角矩阵。对 w 求导得到:
所以,得到:
w=(XTαX)−1XTαY
加权的帽子矩阵为:
H^=X(XTαX)−1XTα