1. The Search Tree ADT-Binary Search Trees
- The property that makes a binary tree into a binary search tree is that for every node, X, in the tree, the values of all the keys in the left subtree are smaller than the key value in X, and the values of all the keys in the right subtree are larger than the key value in X. Notice that this implies that all the elements in the tree can be ordered in some consistent manner.
2叉搜索树的左子树所有key值小于其node,右子树的所有Key都大于其node。
- In Figure 4.15, the tree on the left is a binary search tree, but the tree on the right is not. The tree on the right has a node with key 7 in the left subtree of a node with key 6 (which happens to be the root).
左图是,右图不是2叉搜索树
- the average depth of a binary search tree is O(log n)
笔试题经常考,二叉搜索树的平均深度
2. 二叉搜索树的实现
本实现参考《Data Structures and Algorithm Analysis in C》中的C语言实现方式,改编成python
:
class Tree():
def __init__(self):
self.key=None
self.leftree=None
self.rigtree=None
def find(self,key,tree):
if tree == None:
return tree
if key < tree.key:
return tree.find(key, tree.leftree)
elif key > self.key:
return tree.find(key, tree.rigtree)
else:
return tree
def find_min(self,tree):
if tree == None:
return None
elif tree.leftree == None:
return tree
else:
return tree.find_min(tree.leftree)
def find_max(self,tree):
if tree.key != None:
while tree.rigtree != None:
tree=tree.rigtree
return tree
def insert(self,key,tree):
if tree == None :
tree =Tree()
tree.key=key
elif tree.key ==None:
tree.key=key
elif key < tree.key:
tree.leftree=tree.insert(key,tree.leftree)
elif key > tree.key:
tree.rigtree=tree.insert(key,tree.rigtree)
return tree
def delete(self,key,tree):
if tree == None:
raise Exception("can't find the key!", key)
elif key < tree.key:
tree.leftree=self.delete(key,tree.leftree)
elif key > tree.key:
tree.rigtree=self.delete(key,tree.rigtree)
elif tree.leftree and tree.rigtree:
tmp_tree=self.find_min(tree.rigtree)
tree.key=tmp_tree.key
tree.rigtree=self.delete(tree.key,tree.rigtree)
else:
if tree.leftree ==None:
tree=tree.rigtree
elif tree.rigtree ==None:
tree=tree.leftree
return tree
#从列表或者元组构建二叉树
def make_from_arrary(self,x,tree):
for i in x:
self.insert(i,tree)
#中序遍历
def print_inorder(self,tree):
if tree != None :
tree.print_inorder(tree.leftree)
print(tree.key)
tree.print_inorder(tree.rigtree)
#前序遍历
def print_preorder(self,tree):
if tree != None :
print(tree.key)
tree.print_preorder(tree.leftree)
tree.print_preorder(tree.rigtree)
#后序遍历
def print_postorder(self,tree):
if tree != None :
tree.print_postorder(tree.leftree)
tree.print_postorder(tree.rigtree)
print(tree.key)
if __name__=='__main__':
a=Tree()
a.make_from_arrary([4,3,1,7,8,2,5,10,6],a)
print("print inorder tree:")
a.print_inorder(a)
print("print preorder tree:")
a.print_preorder(a)
print("print postorder tree:")
a.print_postorder(a)
a.delete(7,a)
print("print deleted inoder tree:")
a.print_inorder(a)
结果如下:
>>>
================== RESTART: C:\Users\dhuang\Desktop\test.py ==================
print inorder tree:
1
2
3
4
5
6
7
8
10
print preorder tree:
4
3
1
2
7
5
6
8
10
print postorder tree:
2
1
3
6
5
10
8
7
4
print deleted inoder tree:
1
2
3
4
5
6
8
10
>>>
特别思考以下几点,之前没学过数据结构,(本科非计算机,研究生也不是)笔者花了4个小时,可能自己比较笨吧,反复琢磨:
- 网上有
python
版本,将Node
作为树的单元,笔者按照《DSAA》中的建议,严格遵从递归定义,每个节点都可以看成一棵树,其应该享有树的所有method
。 - 如果是c语言的话,比较容易理解,但是python中没有指针的概念,需要理解
Name
和object
的关系,为此笔者又回顾了以前的pyhon
知识。 - 最后
delete
函数还是有点缺陷,目前实现了较为简单的树的遍历和初始化。另外理解上述代码,多动手画画递归图,多注意python
中的track
,能很快调好代码。
NOTE: 关于树的知识和算法很多,现在只是最基本的阶段。