K-D Tree 算法详解及Python实现

本文详细介绍了K-D Tree算法的原理,包括k-d树的构建算法和最邻近查找算法,并提供了Python实现。通过实例展示了如何在二维空间中构建k-d树以及查找最近邻的过程,探讨了在高维数据下k-d树的性能问题和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-D Tree 算法

   kd tree k − d   t r e e kdimensional tree k − d i m e n s i o n a l   t r e e ,是一种分割k维数据空间的数据结构,常用来多维空间关键数据的搜索(如:范围搜素及近邻搜索),是二叉空间划分树的一个特例。通常,对于维度为 k k ,数据点数为 N 的数据集, kd tree k − d   t r e e 适用于 N2k N ≫ 2 k 的情形。

k-d tree算法原理

  为了避免比较生硬苦涩的文字说明,这里我采用简单的例子表明 kd tree k − d   t r e e 算法。假设有6个二维数据点 { (2,3),(5,4),(9,6),(4,7),(8,1),(7,2)} { ( 2 , 3 ) , ( 5 , 4 ) , ( 9 , 6 ) , ( 4 , 7 ) , ( 8 , 1 ) , ( 7 , 2 ) } 数据点位于二维空间内(如图1所示)。k-d树算法就是要确定图1中这些分割空间的分割线(多维空间即为分割平面,一般为超平面)。下面就要通过一步步展示k-d树是如何确定这些分割线的。


图1 二维数据k-d树空间划分示意图

   kd tree k − d   t r e e 算法可以分为两大部分,一部分是有关k-d树本身这种数据结构建立的算法,另一部分是在建立的k-d树上如何进行最邻近查找的算法。

k-d树构建算法

  首先列出构建k-d树的伪代码见表1,其中k-d树每个节点中主要包含的数据结构见表2。(参考于王永明 王贵锦 编著的《图像局部不变特性特征与描述》)

表1 构建k-d树的伪码

算法:构建k-d树(createKDTree)
输入:数据点集Data-set和其所在的空间Range
输出: Kd,类型为Kd-tree
1 If Data-set 是空的,则返回空的 Kd-tree
2 调用节点生成程序:
  (1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;
  (2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set’ = Data-set\Node-data(除去其中Node-data这一点)。
3
  dataleft = {d属于Data-set’ && d[split] ≤ Node-data[split]}
  Left_Range = {Range && dataleft}
  dataright = {d属于Data-set’ && d[split] > Node-data[split]}
  Right_Range = {Range && dataright}
4
left = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_ Range)。并设置left的parent域为Kd;
right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataleft,Left_ Range)。并设置right的parent域为Kd。

表2 k-d树中每个节点的数据类型

域名 数据类型 描述
Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维)
Range 空间矢量 该节点所代表的空间范围
split 整数 垂直于分割超平面的方向轴序号
Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
parent k-d树 父节点

以上述举的实例来看,过程如下:

  由于此例简单,数据维度只有2维,所以可以简单地给 xy x , y 两个方向轴编号为 0,1 0 , 1 ,也即split= { 0,1} { 0 , 1 }
  (1)确定split域的首先该取的值。分别计算 xy x , y 方向上数据的方差得知 x x 方向上的方差最大,所以split域值首先取 0 ,也就是 x x 轴方向;
  (2)确定Node-data的域值。根据

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值