分治法求最大子序列

假设序列为a[9] = {4,-3,5,-2,-1,2,6,-2,3}

算法思想

采用二分策略


我们知道,最大子序列出现的可能只有三种:

1. 只出现在前半部分;

2. 只出现在后半部分;

3. 横跨了整个序列。

我们只需把三种可能的最大子序列和都求出,然后找到其中最大的那个,就是这个序列的最大子序列了。然后用递归的方法就可求出整个序列的最大子序列以及最大子序列之和了。

在这个序列中前半部分的最大子序列是[a0, a1, a2],和为6;后半部分的最大子序列是[a5, a6],和为8;而第三种情况下的最大子序列为[a0, a1, a2, a3, a4, a5, a6, a7, a8],和为12

此类算法的难点:

在第三种情况下最大子序列的求解。分析第三种情况下的特点,我们发现所求的最大子序列肯定是从中间的开始往左右延伸的。



所以在求解时可以对前半部分从右往左求和,找出求和过程中出现的最大求和值lMaxSum;对后半部分也是类似,从左往右求和,找出出现的最大求和值rMaxSum,然后两者相加就得到第三种情况下的最大自序列。

代码(可在anycodes在线编译测试)

#include <stdio.h>

#define SIZE 10

int max2(int a, int b)
{
	return a>b ? a:b;
}

int max3(int a, int b, int c)
{
	a = a>b ? a:b;
	return a>c ? a:c;
}

int subSeq(int* a, int lI, int rI)
{
	int lMax = 0, rMax = 0, mMaxTmp = 0, mMax = 0;
	int mI = (lI + rI) >> 1;
	if(lI == rI)
		return a[mI];

	lMax = subSeq(a, lI, mI);
	rMax = subSeq(a, mI+1, rI);

	for (int i=mI; i>=lI; --i)
	{
		mMaxTmp += a[i];
		mMax = max2(mMaxTmp, mMax);
	}
	for (int i=mI+1; i<=rI; ++i)
	{
		mMaxTmp += a[i];
		mMax = max2(mMaxTmp, mMax);
	}

	return max3(lMax, mMax, rMax);
}

int main(int argc, char** argv)
{
	int a[SIZE] = {4, -3, 5, -2, -1, 2, 6, -8, 3};
	int L = sizeof(a)/sizeof(a[0]);
	int max = subSeq(a, 0, L-1);
	printf("%d \n", max);
	return 0;
}


 
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值