TensorFlow安装--(方法2)GPU环境配置部分(装CPU版跳过不用看)(Windows10 64位 )

本文详细介绍了在Win10 64位系统上安装GPU版本TensorFlow的过程,包括所需环境配置如CUDA和cuDNN的安装步骤及验证方法。

之前写了一篇是在 ubuntu 14.04下装 TensorFlow,装的是cpu版本的,又试着装gpu的但是出现了很多蜜汁问题,担心把之前的caffe环境破坏了,既然现在官方支持Windows系统了,就试试在win10 64位下安装 TensorFlow。

TensorFlow 有cpu和 gpu两个版本。gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要。

这里我装的是gpu版

环境:

  • win10 64位
  • gpu:gtx1080Ti(确认你的显卡支持 CUDA,这里确认
  • 确认你安装了VS2015或者2013或者2010(我用的2015)
  • python 3.5(确认你的Python版本是3.5 64位。关于python建议安装Anaconda,因为这个集成了很多科学计算所必需的库,能够避免很多依赖问题,安装也特别方便。这里下载
  • pip 9.0.1(确认pip版本 >= 8.1,用pip -V 查看当前 pip 版本,用python -m pip install -U pip升级pip 。)

这里写图片描述

准备工作完成后就可以开始了:

  1. 下载 CUDA 和 cuDNN 安装包
    Google 官方推荐CUDA8.0和cuDNN v6.1,可以去各自官网下载。cudacuDNN
    这里写图片描述

  2. 安装CUDA
    直接双击左边exe安装,按提示下一步装到底就行。装完测试一下是否安装成功,命令行输入 nvcc -V ,看到版本信息就表示安装成功了。
    这里写图片描述
    这里写图片描述

  3. 安装cuDNN
    解压zip压缩文件,放到任何一个目录下就行,然后把放的那个目录添加到Path环境变量里。
    这里写图片描述
    这里写图片描述
    然后将刚才解压出来的下面这些文件复制到相应位置,我解压在了E盘根目录下了。
    这里写图片描述
    E:\cuda\bin\cudnn64_6.dll —> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
    E:\cuda\include\cudnn.h —> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include
    E:\cuda\lib\x64\cudnn.lib —> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64

  4. 安装TensorFlow
    安装部分看下篇帖子
    http://blog.csdn.net/lwplwf/article/details/54896088

<think>我们正在使用conda环境,并且要在其中使用pip安装特定本的tensorflow-gpu2.19.0)。注意,tensorflow2.1本开始,通常使用`tensorflow`包来同时支持CPUGPU,但有时也会单独提供`tensorflow-gpu`包。然而,在2.19.0本中,我们应当查看官方发布情况。根据TensorFlow的发布历史,实际上在TensorFlow 2.x的后期本中,官方推荐使用`tensorflow`包(该包在支持GPU的环境中会自动利用GPU),而不再单独提供`tensorflow-gpu`包。因此,我们需要确认2.19.0本是否存在。 但是,请注意:TensorFlow本通常只发布到2.x的某个点,目前(2023年)最新的稳定本是2.x,但2.19.0这个本号并不存在。实际上,TensorFlow本号在2.5之后,通常以2.5、2.6、...、2.15这样的形式发布,并没有2.19.0。因此,用户可能是打错了本号?或者是指的2.10.0?但用户明确说了2.19.0。 由于本号可能错误,我们需要先澄清:TensorFlow目前(截至2023年10月)并没有2.19.0本。最高本为2.15.0(2023年11月发布)。因此,用户可能是想安装2.10.0?或者2.15.0?但用户明确要求2.19.0。 考虑到用户可能输入错误,我们有两种处理方式: 1. 按照用户指定的本尝试安装(尽管可能不存在) 2. 提醒用户本号可能有误,并提供最新可用本的信息 但根据指令,我们要尽可能帮助用户解决问题。因此,我们先假设用户确实需要安装2.19.0,但发现这个本不存在。那么,我们可以建议用户安装其他本,或者检查本号。 然而,在引用中,用户提到过安装2.10.0本(引用[1])。所以,用户可能是在之前操作的基础上,现在想安装一个更新的本?但2.19.0不存在。 因此,在回答中,我们需要先指出本问题,然后提供安装指定本(比如2.10.0或2.15.0)的方法。同时,我们也可以提供安装最新本的方法。 但是,用户明确要求2.19.0,所以我们将尝试安装,并预期会失败(因为不存在),然后给出解决方案。 步骤: 1. 创建并激活conda环境(如果还没有) 2. 在conda环境中使用pip安装`tensorflow-gpu==2.19.0` 3. 由于本不存在,pip会报错,并列出可用的本。 4. 根据可用的本,选择一个合适的安装(例如2.15.0或2.10.0) 或者,我们可以直接告诉用户2.19.0不存在,并建议安装其他本。 考虑到用户可能坚持使用2.19.0(尽管不存在),我们也可以尝试安装`tensorflow`包(因为后期本中,GPU支持已经合并到主包中),但本号同样不存在。 因此,回答将分为以下步骤: 1. 创建conda环境(可选,如果已有环境可跳过2. 激活conda环境 3. 使用pip安装,并处理本不存在的问题 4. 安装成功后验证GPU是否可用 但是,由于2.19.0不存在,我们可能需要安装其他本。我们可以建议用户安装2.15.0(当前最新的2.x本)或者2.10.0(引用中出现的本)。 另外,安装TensorFlow GPU本需要对应的CUDA和cuDNN支持。因此,在安装指定本之前,需要确保系统环境满足要求。 由于用户是在conda环境中安装,我们可以利用conda来管理CUDA和cuDNN的依赖,但这里用户要求使用pip安装,所以我们可能需要单独安装CUDA和cuDNN,或者使用conda安装这些依赖。 但是,使用pip安装TensorFlow时,它不会自动安装CUDA和cuDNN,所以我们需要提前在系统中安装好,或者在conda环境中使用conda安装这些依赖。 为了简化,我们可以先尝试用pip安装TensorFlow,然后根据错误提示再安装所需的CUDA等。但更推荐的方法是:在conda环境中,使用conda安装cudatoolkit和cudnn,然后再用pip安装TensorFlow。 因此,步骤可以调整为: 1. 创建conda环境(如果还没有) 2. 激活环境 3. 使用conda安装对应本的cudatoolkit和cudnn(需要根据TensorFlow本来选择) 4. 使用pip安装tensorflow-gpu(或tensorflow)指定本 但是,用户要求安装2.19.0,这个本不存在,所以我们需要调整。 综合考虑,我们将采取以下方案: - 告知用户2.19.0本不存在,并提供可用的本列表(通过pip install命令模拟) - 建议用户选择一个可用本(例如2.15.0或2.10.0) - 然后按照选择的安装,并配置对应的CUDA环境 下面开始逐步回答:</think>### 在Conda环境中使用pip安装TensorFlow GPU 2.19.0的步骤 #### 步骤1:创建Conda环境(可选) 若需隔离环境,建议新建Python 3.8-3.10的环境(TensorFlow 2.x兼容范围): ```bash conda create -n tf_gpu_env python=3.9 conda activate tf_gpu_env ``` #### 步骤2安装CUDA和cuDNN依赖 TensorFlow GPU本需要匹配的CUDA/cuDNN。**由于TensorFlow 2.19.0不存在**(截至2024年7月,最新稳定2.15.0[^1]),需调整本: - 对于 **TensorFlow 2.10.0**(引用示例本): ```bash conda install cudatoolkit=11.2 cudnn=8.1 -c conda-forge ``` - 对于 **TensorFlow 2.15.0**(当前最新): ```bash conda install cudatoolkit=11.8 cudnn=8.9 -c conda-forge ``` #### 步骤3:安装TensorFlow GPU 通过pip指定本和清华源加速: ```bash # 安装实际存在的本(如2.10.0或2.15.0) pip install tensorflow-gpu==2.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple # 若坚持尝试2.19.0(会失败,用于验证本不存在) pip install tensorflow-gpu==2.19.0 # 将返回"Could not find a version" ``` #### 步骤4:验证GPU可用性 创建Python测试脚本: ```python import tensorflow as tf print(f"TF Version: {tf.__version__}") print(f"GPU Available: {'Yes' if tf.config.list_physical_devices('GPU') else 'No'}") ``` 预期输出: ``` TF Version: 2.15.0 GPU Available: Yes ``` ### 关键注意事项 1. **本兼容性**: - TensorFlow本需与CUDA/cuDNN严格匹配([官方构建配置表](https://www.tensorflow.org/install/source#gpu)- 2.19.0不存在,可用本范围:2.0.0 - 2.15.0(2024年最新) 2. **依赖管理原则**: - Conda管理CUDA/cuDNN,pip管理TensorFlow(避免混用包管理器[^2]) - 冲突时优先执行 `conda install -c conda-forge cudatoolkit cudnn` 3. **虚拟环境必要性**: - 避免污染base环境(尤其多CUDA共存时) - 环境删除命令:`conda remove -n tf_gpu_env --all` > 实测安装流程可参考:[TensorFlow GPU官方安装指南](https://www.tensorflow.org/install/gpu)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值