logistic回归与正则化

本文介绍了逻辑回归的损失函数、参数估计方法以及正则化技术,包括L1、L2和L0正则化。逻辑回归通过极大似然估计求解模型参数,损失函数采用对数损失,常用于分类问题。正则化则用于防止过拟合,L1正则化倾向于产生稀疏模型,L2正则化确保模型稳定性。
摘要由CSDN通过智能技术生成

常用损失函数

  1. 0-1损失函数
    一般用于分类。
  2. 平方损失
    一般用于回归,假设误差项服从高斯分布,有极大似然估计可推出平方损失函数。
    平方损失函数对异常值敏感,绝对损失函数以及Huber损失函数对异常值鲁棒
    以下是Huber损失函数
    这里写图片描述
  3. 绝对损失
  4. 对数损失或对数似然损失
  5. 合页损失函数(hinge loss)
    一般用于分类
    这里写图片描述

逻辑回归损失函数

逻辑回归的损失函数、代价函数以及目标 函数如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨岚❤️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值