图像去噪的OPenCV添加噪声和去噪

本文介绍了如何使用OpenCV在图像中添加高斯噪声和椒盐噪声,并详细讲解了实现算术均值、几何均值、谐波均值和逆谐波均值滤波器进行图像去噪的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

添加噪声

  1. 添加高斯噪声
IplImage* AddGuassianNoise(IplImage* src)    //添加高斯噪声
{
    IplImage* dst = cvCreateImage(cvGetSize(src),src->depth,src->nChannels);
    IplImage* noise = cvCreateImage(cvGetSize(src),src->depth,src->nChannels);
    CvRNG rng = cvRNG(-1);
    cvRandArr(&rng,noise,CV_RAND_NORMAL,cvScalarAll(0),cvScalarAll(25));
    cvAdd(src,noise,dst);
    return dst;
}
  1. 添加椒盐噪声
IplImage* AddPepperSaltNoise(IplImage* src)    //添加椒盐噪声,随机黑白点
{
    IplImage* dst = cvCreateImage(cvGetSize(src),src->depth,src->nChannels);
    cvCopy(src, dst);
    for(int k=0; k<(src->height*src->width*P); k++)
    {
        int i = rand()%src->height;
        int j = rand()%src->width;
        int m = rand()%2;
        CvScalar s = cvGet2D(src, i, j);
        if(src->nChannels == 1)
        {
           if(m==0)
           {
               s.val[0] = 255;
           } 
           else 
           {
               s.val[0] = 0;
           }
        }
        else if(src->nChannels==3)
        {
           if(m==
### 解决 DeepSeek 服务器繁忙问题的方案 面对 DeepSeek 平台由于官方算力资源紧张而导致的服务卡顿现象,可以采取本地部署的方式以获得更稳定的访问体验。具体来说,利用第三方工具和服务构建个人化的 AI 助手环境是一个有效的策略。 #### 使用 SiliconFlow 和 ChatBox 构建专属 DeepSeek 助手 为了实现更加流畅且不受限于公共服务器负载影响的人工智能交互服务,推荐采用 SiliconFlow API 结合 ChatBox 客户端的方法来搭建私有化的大规模语言模型应用实例[^3]。 - **注册并激活 SiliconFlow 账号** 需要先前往官方网站完成账号创建流程,并通过手机短信验证身份;值得注意的是,在注册过程中输入特定邀请码可以获得额外计算能力配额支持。 - **取得必要的接口授权凭证** 登录后台管理系统后找到“API 密钥”选项卡生成新的认证令牌用于后续集成工作。 - **安装配置 ChatBox 应用程序** 根据操作系统类型挑选合适的发行版进行下载安装,之后启动软件按照向导指示设置连接参数——指定之前准备好的 API key 及选定预训练模型版本(如 `deepseek-ai/DeepSeek-R1`),从而建立起完整的沟通渠道。 经过上述操作即可享受由自己掌控运行状态下的高性能自然语言处理功能,不仅能够保证全天候在线可用性还允许用户根据实际需求定制个性化的交流模式。 ```bash # 示例命令:模拟获取 API Token 的过程 (仅为示意用途) curl -X POST https://api.siliconflow.com/v1/auth/token \ -d '{"username": "your_username", "password": "your_password"}' ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值