scikit-learn:0.2. 加载自己的原始数据

本文聚焦于如何在scikit-learn中加载个人的原始数据,而非常见的公用数据集,介绍load_files函数的应用。

这里不讨论加载常用的公用数据集,而是讨论加载自己的原始数据(即,实际中遇到的数据)


http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_files.html



sklearn.datasets. load_files ( container_pathdescription=Nonecategories=None, load_content=Trueshuffle=Trueencoding=Nonedecode_error='strict'random_state=0 ) [source]

加载文本文件存储的数据集,其中不同类别的文件存放路径为

container_folder/
category_1_folder/
file_1.txt file_2.txt ... file_42.txt
category_2_folder/
file_43.txt file_44.txt ...
### 解决 Conda 中的 PackageNotInstalledError 和 unrecognized arguments 问题 在使用 Conda 环境时,如果遇到 `PackageNotInstalledError` 或 `unrecognized arguments` 错误,这通常与环境配置、命令语法或包安装状态有关。以下是针对这些问题的专业解决方案。 #### 错误分析 1. **PackageNotInstalledError**:此错误表明在指定的 Conda 环境中未找到所需的包。例如,目标环境中可能未安装 `scikit-learn` 或其他相关依赖项[^2]。 2. **Unrecognized Arguments**:此错误通常发生在命令行参数不被识别时,可能是由于拼写错误、命令格式不正确或 Conda 版本过旧导致[^3]。 #### 解决方案 #### 检查当前环境中的包安装状态 运行以下命令以验证目标环境中是否已安装所需的包: ```bash conda list numpy scipy scikit-learn ``` 如果这些包未列出,则说明它们尚未安装在当前环境中。需要先激活正确的环境并安装缺失的包[^4]。 #### 确保操作正确的 Conda 环境 在执行更新或安装命令之前,确保已激活正确的环境。例如,如果目标环境名为 `Ml`,则需运行: ```bash conda activate Ml ``` 然后重新尝试更新命令: ```bash conda update numpy scipy scikit-learn ``` #### 强制重新安装相关包 如果仍然遇到 `PackageNotInstalledError`,可以尝试强制重新安装这些包: ```bash conda install --force-reinstall numpy scipy scikit-learn ``` 此命令会重新安装指定的包,并覆盖现有版本[^5]。 #### 使用 `--prefix` 参数指定环境路径 如果直接在命令中指定环境路径,可以使用 `--prefix` 参数。例如,假设环境路径为 `/home/indulge/anaconda3/envs/Ml`,可以运行: ```bash conda update --prefix /home/indulge/anaconda3/envs/Ml numpy scipy scikit-learn ``` 此方法明确指定了目标环境路径,避免了因环境激活不当导致的问题[^6]。 #### 更新 Conda 版本以解决 `unrecognized arguments` 错误 如果遇到 `unrecognized arguments` 错误,可能是由于 Conda 版本过旧。建议先更新 Conda: ```bash conda update conda ``` 更新完成后,再次尝试原始命令。 #### 清理缓存并重试 有时 Conda 的缓存可能导致问题。可以尝试清理缓存并重试: ```bash conda clean --all conda update numpy scipy scikit-learn ``` #### 示例代码 以下是一个简单的代码示例,用于验证 `scikit-learn` 是否正常工作: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier # 加载数据集 data = load_iris() X, y = data.data, data.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = RandomForestClassifier() model.fit(X_train, y_train) # 输出准确率 print(f"Model Accuracy: {model.score(X_test, y_test)}") ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值