http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
昨晚写了两篇文章,明明保存了,今早却没了,只好简单的重复一下。。。
1、tf:
首先要解决high-dimensional sparse datasets的问题,scipy.sparse matrices 就是这样的数据结构,而 scikit-learn
使用scikit-learn进行文本特征提取:TF-IDF
本文介绍了如何利用scikit-learn库从文本数据中提取特征,特别是关注tf和tf-idf方法。scikit-learn支持高维稀疏数据集,通过scipy.sparse矩阵来处理这类数据。教程链接提供了详细步骤。
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
昨晚写了两篇文章,明明保存了,今早却没了,只好简单的重复一下。。。
1、tf:
首先要解决high-dimensional sparse datasets的问题,scipy.sparse matrices 就是这样的数据结构,而 scikit-learn
1万+
1383
629

被折叠的 条评论
为什么被折叠?