scikit-learn:从文本文件中提取特征(tf、idf)

本文介绍了如何利用scikit-learn库从文本数据中提取特征,特别是关注tf和tf-idf方法。scikit-learn支持高维稀疏数据集,通过scipy.sparse矩阵来处理这类数据。教程链接提供了详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

昨晚写了两篇文章,明明保存了,今早却没了,只好简单的重复一下。。。


1、tf:

首先要解决high-dimensional sparse datasets的问题scipy.sparse matrices 就是这样的数据结构,而 scikit-learn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值