最长公共子序列-动态规划

原创 2013年12月04日 17:26:08

http://acm.nyist.net/JudgeOnline/problem.php?pid=17

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

【问题】 求两字符序列的最长公共字符子序列

求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:


recursive formula

回溯输出最长公共子序列过程:

flow

 

算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。

    利用求最长公共子序列求单调递增最长子序列代码:
 
#include<cstdio>
#include<cmath>
#include<iostream>
#include<string.h>
#include<string>
using namespace std;

char str[27];
int istr;
int l[10005][27];//长度length

void lcs_l(char a[10005],char b[27]){  //求出数组l
	int i,j,la,lb;
	la=strlen(a);lb=strlen(b);
	for(j=0;j<=lb;j++)          //数组l的边界
		l[0][j]=0;
	for(i=1;i<=la;i++)
		l[i][0]=0;
	for(i=1;i<=la;i++)
		for(j=1;j<=lb;j++)
		{
			if(a[i-1]==b[j-1])
				l[i][j]=l[i-1][j-1]+1;
			else
				l[i-1][j]>l[i][j-1]?l[i][j]=l[i-1][j]:l[i][j]=l[i][j-1];
		}
}
void lcs_str(char a[10005],char b[27],int i,int j){
	if(i==0||j==0)
		return;
	if(a[i-1]==b[j-1]){
		lcs_str(a,b,i-1,j-1);
		str[istr++]=a[i-1];
	}
	else if(l[i-1][j]>l[i][j-1]){
		lcs_str(a,b,i-1,j);
	}
	else
		lcs_str(a,b,i,j-1);
}


int main(void){         //利用最长公共子序列求最长单调递增子序列
	int ncase;
	char alphabet[27]="abcdefghijklmnopqrstuvwxyz";
	cin>>ncase;
	getchar();
	while(ncase--){
		char a[10005];
		int la ,lb,i;
		for(i=0;i<27;i++)
			str[i]='\0';
		gets(a);
		la=strlen(a);lb=26;
		istr=0;
		lcs_l(a,alphabet);
		lcs_str(a,alphabet,la,lb);
		cout<<strlen(str)<<endl;
	}
//	system("pause");
	return 0;
}        

参考:http://blog.csdn.net/yysdsyl/article/details/4226630
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

动态规划----最长公共子序列LCS

1、基本概念   一个给定序列的子序列就是该给定序列中去掉零个或者多个元素的序列。形式化来讲就是:给定一个序列X={x1,x2,……,xm},另外一个序列Z={z1、z2、……,zk},如果存在...

动态规划之最长公共子序列问题

以算法导论为指导书慢慢看算法的第二个算法 package blut.Algorithms.dongtaiguihua; /** * 最长公共子串LCS * @author heartraid ...

动态规划之最长公共子序列

动态规划算法的基本要素
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)