相似图片搜索的三种哈希算法

这篇博客介绍了用于图片搜索的三种哈希算法:平均哈希(aHash)、感知哈希(pHash)和差异哈希(dHash)。aHash通过比较像素与平均值来生成指纹,适合缩略图搜索;pHash利用DCT减少频率提高精度;dHash基于相邻像素差异快速生成指纹,效果优于aHash。文章还提供了算法步骤及开源项目链接。
摘要由CSDN通过智能技术生成


想必大家都用google或baidu的识图功能,上面就是我搜索冠希哥一幅图片的结果,达到图片比较目的且利用信息指纹比较有三种算法,这些算法都很易懂,下面分别介绍一下:


一、平均哈希算法(aHash)

此算法是基于比较灰度图每个像素与平均值来实现的,最适用于缩略图,放大图搜索。

步骤:

1.缩放图片:为了保留结构去掉细节,去除大小、横纵比的差异,把图片统一缩放到8*8,共64个像素的图片。

2.转化为灰度图:把缩放后的图片转化为256阶的灰度图。

附上灰度图相关算法(R = red, G = green, B = blue)

1.浮点算法:Gray=R*0.3+G*0.59+B*0.11
2.整数方法:Gray=(R*30+G*59+B*11)/100
3.移位方法:Gray =(R*76+G*151+B*28)>>8;
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值