第04章_函数和递归

原创 2012年03月27日 18:55:40

04_函数和递归

Example_0401_组合数.cpp

Example_0403_孪生素数.cpp

Example_0406_用递归法计算阶乘.cpp

 

个人认为,这章的内容比较简单,而且习题也比较少,稍要思考的有第一个和第二个例子。

其中,第一个例子中需要去思考如何使用数学的方法去优化程序,而第二个程序则是用到数学上的定理~

 

// Example_0401_组合数.cpp

/**
 * 题目名称:组合数
 * 题目描述:输入非负整数m和n,输出组合数C(n,m)=n!/( (n-m)!*m! ), 其中 m <= n <= 20
 **/

/**
 * 下面注释部分代码为经典做法,直接使用一个函数代替这个阶乘,但是,这个方法容易在中间计算时数字范围溢出。
 * 为了解决这一问题,我们采用了另一种思路做法,以将这个溢出问题解决。
 *
 * #include <stdio.h>
 *
 * inline double f(double n)
 * {
 *      double i, m = 1;
 *     for (i = 1; i <= n; i++){
 *          m *= i;
 *      }
 *      return m;
 * }
 *
 * int main()
 * {
 *      double m, n;
 *      scanf("%lf%lf", &m, &n);
 *      printf("%.0lf\n", f(n) / (f(m) * f(n - m) ));
 *      return 0;
 * }
 **/

#include <iostream>
using namespace std;

long long cnm(int n, int m)
{
    long s = 1;
    if(m > n / 2){  // 先做最小优化,C(m, n)的结果与 C(m, m - n)相同
        m = n - m;
    }               // 经过上面的if处理后,m的值就一定比n-m要小了。
                    // 对于1, 2, 3, ..., m, m+1, ..., n-m, ..., n, 公式中的n! 与 m! (n-m)!会有重叠部分
                    // 我们可以将n!与(n-m)!重复部分去掉,那么i的初值就可以是i = n-m+1,
                    // 嵌入到这个循环中的while循环,用于除数部分
                    // 为了防止溢出,一边计算(n-m+1)!,一边除掉1, 2, 3...m能除的数。
    int k = 1;
    for(int i = n - m + 1; i<= n; ++i){
        s *= (long long) i;
     //   cout << "i = " << i << " s = " << s << endl;
        while(k <= m && s % k == 0){
            s /= (long long) k;
    //    cout << "进入了while循环:" << " k = " << k << "   s  = " << s << endl;
            ++k;
        }
    }
    return s;
}


int main()
{
    long long m, n;
    cin >> n >> m;
    long long result = cnm(n, m);
    cout << result << endl;
    return 0;
}

/**
 * 观察输出过程:
 *  7 3
 *  i = 5 s = 5
 *  进入了while循环: k = 1   s  = 5
 *  i = 6 s = 30
 *  进入了while循环: k = 2   s  = 15
 *  进入了while循环: k = 3   s  = 5
 *  i = 7 s = 35
 *  35
 **/


 

// Example_0403_孪生素数.cpp

/**
 * 题目名称:孪生素数
 * 题目描述:
 *      如果n和n+2都是素数,则称它们是孪生素数。输入m,输出两个数均不超过m的最大孪生素数。 5 <= m <= 10000.
 * 样例输入: 20
 * 样例输出: 17 18
 * 样例输入: 1000
 * 样例输出: 881 883
 **/

 #include <iostream>
 #include <cmath>
 #include <assert.h>
 using namespace std;

 int is_prime(int x)
 {
     int i, m;
     assert( x >= 0);  // 宏assert用于错误检测,当表达式为零时,宏写错误到STDERR并退出程序执行。
                       // 在程序调用的"调试"中一般会使用这个宏,不过在写一些工程时,一般不会用到这个。
     if(x == 1) {      // 1不是素数
          return 0;
     }
     static_cast <int> (m = floor(sqrt(x) + 0.5)); // 这里前面提到过,使用+0.5是为了减少误差,防止0.9999不能为1的情况。
     for( i = 2; i <= m; ++i){      // 这里,还将判断的界限设置为原来数的开方,减少判断的次数,这里不使用i*i<=x是为了防止内存溢出。
         if(x % i == 0){
             return 0;      // 有余数则非素数
         }
     }
     return 1;              // 全过测试通过,为素数。
}

// 补充:定理,如果n不是素数,则n有满足1<d<=sqrt(n)的一个因子d
// 证明:如果n不是素数,则由定义n有一个因子d满足1<d<n,
//       如果d大于sqrt(n), 则n/d是满足1<n/d<=sqrt(n)的一个因子。

int main()
{
     int m;
     cin >> m;
     for(int i = m ; i >= 5; --i){
         if (is_prime(i) && is_prime(i - 2) ){
             cout << i - 2 << " " << i << endl;
            break;
         }
     }
     return 0;
}


 

// Example_0406_用递归法计算阶乘.cpp

/**
 * 题目名称:用递归法计算阶乘
 * 题目描述:阶乘的函数f(n) = n!可以定义为:f(0) = 1, f(n) = f(n - 1) * n ( n >= 1)
 **/

#include <stdio.h>


int f(int n)
{
    return n == 0 ? 1 : f(n - 1) * n;
}

int main()
{
    printf("%d\n", f(3));
    return 0;
}


 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

VB 递归制作Fibonacci函数

  • 2010-06-07 15:17
  • 37KB
  • 下载

FishC笔记—22 讲 函数:递归是神马

FishC笔记—22 讲 函数:递归是神马

母函数算法,递归求解

  • 2011-10-05 22:52
  • 391KB
  • 下载

Day 23 内置、匿名函数及递归

1 文件 a.txt 内容如下,标题为:姓名,性别,年纪,薪资 egon male 18 3000 alex male 38 30000 wupeiqi female 28 20000 yuanh...

递归函数 递归排序法

  • 2014-03-16 20:33
  • 400KB
  • 下载

Num 33 : 函数递归 [ 全排列 ]

数学上的全排列问题:           给定m个数,可以排列成n位数的所有情况;         例:3 个数 ( 1,2,3 ) 排列成两位数...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)