关闭

第04章_函数和递归

1034人阅读 评论(0) 收藏 举报

04_函数和递归

Example_0401_组合数.cpp

Example_0403_孪生素数.cpp

Example_0406_用递归法计算阶乘.cpp

 

个人认为,这章的内容比较简单,而且习题也比较少,稍要思考的有第一个和第二个例子。

其中,第一个例子中需要去思考如何使用数学的方法去优化程序,而第二个程序则是用到数学上的定理~

 

// Example_0401_组合数.cpp

/**
 * 题目名称:组合数
 * 题目描述:输入非负整数m和n,输出组合数C(n,m)=n!/( (n-m)!*m! ), 其中 m <= n <= 20
 **/

/**
 * 下面注释部分代码为经典做法,直接使用一个函数代替这个阶乘,但是,这个方法容易在中间计算时数字范围溢出。
 * 为了解决这一问题,我们采用了另一种思路做法,以将这个溢出问题解决。
 *
 * #include <stdio.h>
 *
 * inline double f(double n)
 * {
 *      double i, m = 1;
 *     for (i = 1; i <= n; i++){
 *          m *= i;
 *      }
 *      return m;
 * }
 *
 * int main()
 * {
 *      double m, n;
 *      scanf("%lf%lf", &m, &n);
 *      printf("%.0lf\n", f(n) / (f(m) * f(n - m) ));
 *      return 0;
 * }
 **/

#include <iostream>
using namespace std;

long long cnm(int n, int m)
{
    long s = 1;
    if(m > n / 2){  // 先做最小优化,C(m, n)的结果与 C(m, m - n)相同
        m = n - m;
    }               // 经过上面的if处理后,m的值就一定比n-m要小了。
                    // 对于1, 2, 3, ..., m, m+1, ..., n-m, ..., n, 公式中的n! 与 m! (n-m)!会有重叠部分
                    // 我们可以将n!与(n-m)!重复部分去掉,那么i的初值就可以是i = n-m+1,
                    // 嵌入到这个循环中的while循环,用于除数部分
                    // 为了防止溢出,一边计算(n-m+1)!,一边除掉1, 2, 3...m能除的数。
    int k = 1;
    for(int i = n - m + 1; i<= n; ++i){
        s *= (long long) i;
     //   cout << "i = " << i << " s = " << s << endl;
        while(k <= m && s % k == 0){
            s /= (long long) k;
    //    cout << "进入了while循环:" << " k = " << k << "   s  = " << s << endl;
            ++k;
        }
    }
    return s;
}


int main()
{
    long long m, n;
    cin >> n >> m;
    long long result = cnm(n, m);
    cout << result << endl;
    return 0;
}

/**
 * 观察输出过程:
 *  7 3
 *  i = 5 s = 5
 *  进入了while循环: k = 1   s  = 5
 *  i = 6 s = 30
 *  进入了while循环: k = 2   s  = 15
 *  进入了while循环: k = 3   s  = 5
 *  i = 7 s = 35
 *  35
 **/


 

// Example_0403_孪生素数.cpp

/**
 * 题目名称:孪生素数
 * 题目描述:
 *      如果n和n+2都是素数,则称它们是孪生素数。输入m,输出两个数均不超过m的最大孪生素数。 5 <= m <= 10000.
 * 样例输入: 20
 * 样例输出: 17 18
 * 样例输入: 1000
 * 样例输出: 881 883
 **/

 #include <iostream>
 #include <cmath>
 #include <assert.h>
 using namespace std;

 int is_prime(int x)
 {
     int i, m;
     assert( x >= 0);  // 宏assert用于错误检测,当表达式为零时,宏写错误到STDERR并退出程序执行。
                       // 在程序调用的"调试"中一般会使用这个宏,不过在写一些工程时,一般不会用到这个。
     if(x == 1) {      // 1不是素数
          return 0;
     }
     static_cast <int> (m = floor(sqrt(x) + 0.5)); // 这里前面提到过,使用+0.5是为了减少误差,防止0.9999不能为1的情况。
     for( i = 2; i <= m; ++i){      // 这里,还将判断的界限设置为原来数的开方,减少判断的次数,这里不使用i*i<=x是为了防止内存溢出。
         if(x % i == 0){
             return 0;      // 有余数则非素数
         }
     }
     return 1;              // 全过测试通过,为素数。
}

// 补充:定理,如果n不是素数,则n有满足1<d<=sqrt(n)的一个因子d
// 证明:如果n不是素数,则由定义n有一个因子d满足1<d<n,
//       如果d大于sqrt(n), 则n/d是满足1<n/d<=sqrt(n)的一个因子。

int main()
{
     int m;
     cin >> m;
     for(int i = m ; i >= 5; --i){
         if (is_prime(i) && is_prime(i - 2) ){
             cout << i - 2 << " " << i << endl;
            break;
         }
     }
     return 0;
}


 

// Example_0406_用递归法计算阶乘.cpp

/**
 * 题目名称:用递归法计算阶乘
 * 题目描述:阶乘的函数f(n) = n!可以定义为:f(0) = 1, f(n) = f(n - 1) * n ( n >= 1)
 **/

#include <stdio.h>


int f(int n)
{
    return n == 0 ? 1 : f(n - 1) * n;
}

int main()
{
    printf("%d\n", f(3));
    return 0;
}


 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:615827次
    • 积分:7336
    • 等级:
    • 排名:第3003名
    • 原创:175篇
    • 转载:21篇
    • 译文:0篇
    • 评论:431条
    博客简单介绍
    大学感言

            生活上,学习上的点点滴滴总是那么的神奇,过去未知答案时所走出的道路,在未来的这天,发觉还真的能将它的点点滴滴串连起来,现在所走之路,未知是何路,但必是通向未来之路~

            因为不满足于现状,觉得可以做得更好,所以,常常不断地在寻找着出路,不愿做一只井底之蛙,通过不断努力去改变现状,学习如此,生活亦是如此。不知是何时起,有这么一股想法,这么一股劲,不断寻求,相信总有一天苗子会长大成参天大树。

            假如抛开了一切外在负担,你最在乎的是什么?或者说,你最想做的事情是什么? 燃起你的激情,为之奋斗~  梦&想,梦非仅是梦,想非仅空想,梦想并非遥不可及~  用这燃烧不尽的激情,追随着它,Achieve it ~ 不要让自己迷失方向,不要让一切邪恶的东西将其覆盖,将其浇灭。

            不要冷漠了任何一件事物,它们总是会有这么神奇的一个地方,不断地挖掘挖掘,你会懂得更多,获得更多~好奇心是充满魔力的东西~