感知器
1.定义
感知器是一种最简单的前馈神经网络,多输入单输出,是一种二分类。
优点:学习算法简单,易于理解。
缺点:学习速率低,学习效果差。不便于初学者运用,参数选择很难。
2.算法
采用的是一种简单的惩罚机制。
条件:
- 样本特征值: x=[x1,x2........xn] , y∈ { -1, 1}, 初始值 θ
算法:
- 更新原则:
if(yi∗(θ′∗xi)<=0) : θ(k+1)=θ(k)+(
本文深入探讨了神经网络的基础——感知器,包括其定义、算法及简单的代码实现,指出了其学习速率低和效果差的缺点。接着,文章转向BP神经网络,阐述了其网络结构和训练过程,以及误差反向传播的原理,但内容未完,后续将介绍多层感知器和RBF径向函数。
感知器是一种最简单的前馈神经网络,多输入单输出,是一种二分类。
优点:学习算法简单,易于理解。
缺点:学习速率低,学习效果差。不便于初学者运用,参数选择很难。
采用的是一种简单的惩罚机制。
条件:
算法:
513
7524

被折叠的 条评论
为什么被折叠?