基于Theano的深度学习(Deep Learning)框架Keras学习随笔-06-激活函数

本文详细介绍了激活函数在深度学习中的重要性,特别是Keras框架中的一些常见和复杂的激活函数,如sigmoid、tanh、ReLU及其变种。讨论了激活函数的生物学灵感,如softplus和ReLU的稀疏性,并指出过度稀疏可能对模型的影响。此外,还提到了PReLU和LeakyReLU等更复杂的激活函数,它们在提高准确率的同时,也可能增加训练时间。
摘要由CSDN通过智能技术生成

        原地址:http://blog.csdn.net/niuwei22007/article/details/49208643可以查看更多文章

激活函数也是神经网络中一个很重的部分。每一层的网络输出都要经过激活函数。比较常用的有linear,sigmoid,tanh,softmax等。Keras内置提供了很全的激活函数,包括像LeakyReLU和PReLU这种比较新的激活函数。

一、激活函数的使用

常用的方法在Activation层中可以找到。看代码。

from keras.layers.core import Activation, Dense
model.add(Dense(64))
model.add(Activation('tan
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值